Math 2550 Worksheet Section 12.2

- 1. Let $A=(1,1),\, B=(1,0),\, C=(-1,3),\, {\rm and}\,\, D=(-2,2).$ Let $\vec{v}=\overrightarrow{AB}+\overrightarrow{CD}.$
 - (a) Find the component form of \vec{v} .
 - (b) Express \vec{v} in the form of $v_1\hat{i} + v_2\hat{j}$.
 - (c) Find the magnitude (length) of the \vec{v} .
 - (d) Find the unit vector in the direction of \vec{v} .
- 2. Let $\vec{u} = \langle 1, 1, -1 \rangle$ and $\vec{v} = \langle 2, 0, 3 \rangle$.
 - (a) Find the component form of $2\vec{u} \vec{v}$.
 - (b) Express \vec{u} as a product of its length and direction.
 - (c) Find a vector of magnitude 2 in the direction of \vec{v} .
- 3. Let A = (-1, 1, 5) and B = (2, 5, 0).
 - (a) What is the midpoint of line segment AB?
 - (b) If $\overrightarrow{AC} = \hat{i} + 4\hat{j} 2\hat{k}$, what is C?

- 1. (a) $\vec{v} = \langle -1, -2 \rangle$.
 - (b) $\vec{v} = -\hat{i} 2\hat{j}$.
 - (c) $|\vec{v}| = \sqrt{5}$.
 - (d) $\hat{v} = \frac{1}{\sqrt{5}} \langle -1, -2 \rangle$.
- 2. (a) (0, 2, -5).
 - (b) $\vec{u} = \sqrt{3} \cdot \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \rangle$.
 - (c) $\vec{v} = \frac{2}{\sqrt{13}} \cdot \langle 2, 0, 3 \rangle$.
- 3. (a) $(\frac{1}{2}, 3, \frac{5}{2})$.
 - (b) C = (0, 5, 3).

Math 2550 Worksheet Section 12.3

- 1. Let $\vec{v} = \langle 2, -4, \sqrt{5} \rangle$ and $\vec{u} = \langle -2, 4, -\sqrt{5} \rangle$. Compute the following:
 - (a) $\vec{v} \cdot \vec{u}$
 - (b) the cosine of the angle between \vec{v} and \vec{u} .
 - (c) $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
 - (d) $(3\vec{v}) \cdot (2\vec{u})$.
- 2. Are $\vec{u}=3\hat{i}-2\hat{j}$ and $\vec{v}=4\hat{i}+6\hat{j}$ orthogonal? Why or why not? Also, sketch these vectors.
- 3. Suppose that a box on a horizontal floor is being towed at an angle of 30° to the right with a force F of magnitude 22 newtons.
 - (a) Draw a diagram.
 - (b) What is the horizontal and vertical components of the force?
 - (c) How much work is done by the force \vec{F} if the box is pulled 7 meters?

- 1. (a) -25.
 - (b) $\cos \theta = -1$.
 - (c) $\langle -2, 4, -\sqrt{5} \rangle$.
 - (d) -150.
- 2. Yes.
- 3. (a) N/A
 - (b) Horizontal component = $11\sqrt{3}$ and vertical component =11.
 - (c) $77\sqrt{3}$.

Math 2550 Worksheet Section 12.4

- 1. Let $\vec{u} = 2\hat{i} 2\hat{j} \hat{k}$ and $\vec{v} = \hat{i} \hat{k}$. Compute the following:
 - (a) $\vec{u} \times \vec{v}$.
 - (b) $3\vec{u} \times 2\vec{v}$.
 - (c) $\vec{v} \times \vec{u}$.
- 2. Let P = (1, -1, 2), Q = (2, 0, -1), and R = (0, 2, 1).
 - (a) Find the area of the triangle determined by the points P, Q, and R.
 - (b) Find a unit vector normal to the plane containing P, Q, and R.
- 3. Find the volume of the parallelepiped, where four of whose vertices are A(0,0,0), B(1,2,0), C(0,-3,2), D(3,-4,5) such that vertex D does not lie in the same plane as A, B, and C.

- 1. (a) $2\hat{i} + 1\hat{j} + 2\hat{k}$.
 - (b) $12\hat{i} + 6\hat{j} + 12\hat{k}$.
 - (c) $-2\hat{i} \hat{j} 2\hat{k}$.
- 2. (a) $2\sqrt{6}$.
 - (b) $\frac{1}{\sqrt{6}}\langle 2, 1, 1 \rangle$.
- 3. 5.

Math 2550 Worksheet Section 12.5

- 1. Find parametric equation for
 - (a) the line through point P = (1, 2, -1) and point Q(-1, 0, 1).
 - (b) the line through (0, -7, 0) perpendicular to the plane x + 2y + 2z = 13.
 - (c) the line in which the planes 3x 6y 2z = 3 and 2x + y 2z = 2 intersect.
- 2. How do we know that the points (1, 1, -1), (2, 0, 2), and (0, -2, 1) determine a unique plane? Find the equation of the plane through (1, 1, -1), (2, 0, 2), and (0, -2, 1).
- 3. Find the distance from the point (2,1,3) to the line x=2+2t, y=1+6t, z=-3-5t.
- 4. Find the distance from the point (2, -3, 4) to the plane x + 2y + 2z = 13.
- 5. When will 3 distinct points NOT determine a unique plane? Find 2 planes that are not parallel that both contain the points P(1,-1,1), Q(3,2,0), and R(5,5,-1).

1. (a)
$$x = 1 - 2t$$
, $y = 2 - 2t$, $z = -1 + 2t$.

(b)
$$x = t$$
, $y = -7 + 2t$, $z = 2t$.

(c)
$$x = 1 + 14t, y = 2t, z = 15t.$$

$$2. \ 7x - 5y - 4z = 6.$$

3.
$$\frac{12\sqrt{2}}{\sqrt{13}}$$
.

- 4. 3.
- 5. Think about it.

Math 2550 Worksheet Section 13.1

- 1. Given the position of a particle in the xy-plane at time t: $\dot{r}(t) = e^t \hat{i} + \frac{2}{9} e^{2t} \hat{j}$, $t = \ln 3$,
 - (a) find an equation in x and y whose graph is the path of the particle.
 - (b) find the particle's velocity and acceleration vectors at the given value of t.
 - (c) Sketch the path of the particle and include the particle's velocity and acceleration vectors at the given value of t.
- 2. Given the position of a particle in the xy-plane at time t: $\dot{r}(t) = (2\cos t)\hat{i} + (3\sin t)\hat{j} + 4t\hat{k}, t = \pi/2,$
 - (a) find the particle's velocity and acceleration vectors.
 - (b) write the particle's velocity at the given value of t as the product of its speed and direction.
- 3. Find the parametric equations for the line that is tangent to the curve

$$\vec{r}(t) = \left\langle \ln t, \frac{t-1}{t+2}, t \ln t \right\rangle, \text{ at } t = 1.$$

- 1. (a) $y = \frac{2}{9}x^2$, x > 0.
 - (b) $\vec{v}(t) = \vec{r}'(t) = e^t \hat{i} + \frac{4}{9} e^{2t} \hat{j}$ and
 - $\vec{a}(t) = \vec{v}'(t) = e^t \hat{i} + \frac{8}{9} e^{2t} \hat{j}$
 - (c) $\vec{a}(\ln 3) = 3\hat{i} + 8\hat{j}$.
 - $\vec{v}(\ln 3) = 3\hat{i} + 4\hat{j}.$
- 2. (a) $\vec{v}(t) = (-2\sin t)\hat{i} + (3\cos t)\hat{j} + 4\hat{k}$.
 - $\vec{a}(t) = (-2\cos t)\hat{i} (3\sin t)\hat{j}.$
 - (b) $\vec{v}(\pi/2) = 2\sqrt{5} \left(-\frac{1}{\sqrt{5}} \hat{i} + \frac{2}{\sqrt{5}} \hat{k} \right)$.
- 3. x = t, $y = \frac{1}{3}t$, z = t.

Math 2550 Worksheet Section 13.2

1. Suppose that $\vec{r}(t)$ satisfies

$$\vec{r}''(t) = -\hat{i} - \hat{j} - \hat{k}, \quad t \ge 0, \qquad \vec{r}'(0) = 5\hat{i}, \qquad \vec{r}(0) = 10\hat{i} + 10\hat{j} + 10\hat{k}.$$

Find $\vec{r}(t)$.

- 2. A baseball is hit when it is 2.5 ft above the ground. It leaves the bat with an initial velocity of 140 ft/sec at a launch angle of 30°. At the instant the ball is hit, an instantaneous gust of wind blows against the ball, adding a component of $-14\hat{i}$ (ft/sec) to the ball's initial velocity. A 15 ft high fence lies 400 ft from the home plate in the direction of the flight. (Note that gravity, g = 32 ft/sec²)
 - (a) Include an appropriate sketch.
 - (b) Find a vector equation for the path of the baseball.
 - (c) How high does the baseball go, and when does it reach maximum height?
 - (d) Find the range and flight time of the baseball, assuming that the ball is not caught.
 - (e) When is the baseball 20 ft high? How far (ground distance) is the baseball from home plate at that height?
 - (f) Has the batter hit a home run? Explain.

1.
$$\vec{r}(t) = (10 + 5t - \frac{1}{2}t^2)\hat{i} + (10 - \frac{1}{2}t^2)\hat{j} + (10 - \frac{1}{2}t^2)\hat{k}$$

- 2. (a) You can do this!
 - (b) $\vec{r}(t) = (70\sqrt{3} 14)t\hat{i} + (2.5 + 70t 16t^2)\hat{j}$.
 - (c) $y_{\text{max}} = 79.0625$ ft., which is reached at t = 2.1875 s.
 - (d) t = 4.41s. 472.94 ft.
 - (e) 29 ft and 441 ft.
 - (f) Yes.

Math 2550 Worksheet Section 13.3

- 1. Given $\vec{r}(t) = (6\sin 2t)\hat{i} + (6\cos 2t)\hat{j} + 5t\hat{k}, \ 0 \le t \le \pi,$
 - (a) find the unit tangent vector of $\vec{r}(t)$.
 - (b) find the length of the indicated portion of $\vec{r}(t)$.
- 2. Find the point on the curve

$$\vec{r}(t) = (5\sin t)\hat{i} + (5\cos t)\hat{j} + 12t\hat{k}$$

at a distance 26π units along the curve from the point (0,5,0) in the direction of increasing arc length.

- 3. Given $\vec{r}(t) = (2\ln(t+1))\hat{i} + (e^{2t}+t)\hat{j} + (\sin^2(t))\hat{k}$, set up the appropriate integral with limits to find the length of the course from point A(0,1,0) to $B(\ln 4, e^2+1, \sin^2(1))$.
- 4. Find the length of the curve

$$\vec{r}(t) = (\sqrt{2}t)\hat{i} + (\sqrt{3}t)\hat{j} + (1-t)\hat{k}$$

from (0,0,1) to $(\sqrt{2},\sqrt{3},0)$.

- 1. (a) $\vec{T} = (\frac{12}{13}\cos 2t)\hat{i} (\frac{12}{13}\sin 2t)\hat{j} + \frac{5}{13}\hat{k}$.
 - (b) 13π .
- 2. $(0, 5, 24\pi)$.
- 3. $s = \int_0^1 \sqrt{\frac{4}{(t+1)^2} + (2e^{2t} + 1)^2 + 4\sin^2 t \cos^2 t} dt$.
- 4. $\sqrt{6}$.

Math 2550 Worksheet Section 13.4

- 1. Find \overrightarrow{T} , \overrightarrow{N} , and κ for
 - (a) $\vec{r}(t) = (3\sin t)\hat{i} + (3\cos t)\hat{j} + 4t\hat{k}$.
 - (b) $\vec{r}(t) = \langle t, \ln \cos t \rangle, -\pi/2 < t < \pi/2.$
- 2. The graph y = f(x) in the xy-plane automatically has parametrization x = x and y = f(x), and the vector formula $\dot{r}(x) = x\hat{i} + f(x)\hat{j}$. Use this formula to show that if f is a twice-differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}.$$

- 3. Find $\kappa(x)$ for
 - (a) $f(x) = e^x$.
 - (b) $f(x) = \sin x$.
- 4. Determine the maximum curvature for $f(x) = \ln x$.
- 5. Let $\vec{r}(t) = -(t + (1/t))\hat{i} + (2\ln t)\hat{j}, e^{-5} \le t \le e^5.$
 - (a) Find the radius curvature at t = 1.
 - (b) Find \overrightarrow{N} at t = 1,
 - (c) Find the center of the circle of curvature at t = 1.
 - (d) Find the equation for the circle of curvature at t = 1.

1. (a)
$$\overrightarrow{T} = \frac{3\cos(t)}{5}\hat{i} - \frac{3\sin(t)}{5}\hat{j} + \frac{4}{5}\hat{k}, \overrightarrow{N} = -\sin(t)\hat{i} - \cos(t)\hat{j}$$
, and $\kappa = \frac{3}{25}$

(b)
$$\overrightarrow{T} = \cos(t)\hat{i} - \sin(t)\hat{j}$$
 , $\overrightarrow{N} = -\sin(t)\hat{i} - \cos(t)\hat{j}$, and $\kappa(t) = \cos(t)$.

3. (a)
$$\kappa(x) = \frac{e^x}{(1+e^{2x})^{3/2}}$$

(b)
$$\kappa(x) = \frac{|\sin(x)|}{(1+\cos^2(x))^{3/2}}$$

$$4. \ \kappa = \frac{2}{3\sqrt{3}}$$

(b)
$$\overrightarrow{N}(1) = \langle -1, 0 \rangle$$
.

(c)
$$(-4,0)$$
.

(d)
$$(x+4)^2 + y^2 = 4$$
.

Math 2550 Worksheet Section 13.5

- 1. Write \vec{a} in the form of $\vec{a} = a_T \vec{T} + a_N \vec{N}$ without finding \vec{T} and \vec{N} for $\vec{r}(t) = \langle a \sin t, a \cos t, bt \rangle$.
- 2. Find \overrightarrow{T} , \overrightarrow{N} , \overrightarrow{B} , κ , and τ for
 - (a) $\vec{r}(t) = (3\sin(2t))\hat{i} (3\cos(2t))\hat{j} + 2t\hat{k}$.
 - (b) $\vec{r}(t) = (a \sin t)\hat{i} + (a \cos t)\hat{j} + bt\hat{k}$.
- 3. Find the equations for the osculating, normal, and rectifying planes at the given value of t.
 - (a) $\vec{r}(t) = (e^t \cos(t))\hat{i} + (e^t \sin(t))\hat{j} + 2\hat{k}, t = 0.$
 - (b) $\vec{r}(t) = t^2 \hat{i} + (t^3 1)\hat{j} + e^t \hat{k}, t = 0.$

1.
$$\vec{a} = |a| \vec{N}$$
.

$$\overrightarrow{T} = \frac{\langle 3\cos 2t, 3\sin 2t, 1 \rangle}{\sqrt{10}}$$

$$\overrightarrow{N} = \frac{\overrightarrow{T}'}{|T'|} = \langle -\sin 2t, \cos 2t, 0 \rangle$$

$$\overrightarrow{B} = \frac{\langle -\cos 2t, \sin 2t, 3 \rangle}{\sqrt{10}}$$

$$\kappa = \frac{3}{10}$$

$$\tau = \frac{1}{10}$$

$$\vec{T} = \frac{\langle a \cos t, -a \sin t, b \rangle}{\sqrt{a^2 + b^2}}$$

$$\vec{N} = \langle -\sin t, -\cos t, 0 \rangle$$

$$\begin{split} \overrightarrow{B} &= \frac{\langle b\cos t, -b\sin t, -a\rangle}{\sqrt{a^2 + b^2}}.\\ \kappa &= \frac{a}{a^2 + b^2} \end{split}$$

$$\tau = \frac{-b}{a^2 + b^2}$$

- 3. (a) Osculating Plane: z=2, Normal Plane: x+y=1 and Rectifying Plane: -x+y=-1.
 - (b) Osculating Plane: y = -1, Normal Plane: z = 1 and Rectifying Plane: x = 0.

Math 2550 Worksheet Section 14.1

1. Find and sketch the domain for each function.

(a)
$$f(x,y) = \sqrt{x-y-1}$$
.

(b)
$$f(x,y) = \sqrt{(x-4)(y^2-1)}$$
.

(c)
$$f(x,y) = \cos^{-1}(y - 4x^2)$$
.

(d)
$$f(x,y) = \frac{1}{4 - x^2 - y^2}$$
.

(e)
$$f(x,y) = \frac{1}{\ln(4 - x^2 - y^2)}$$

2. Let
$$f(x,y) = \sqrt{1 - xy}$$
.

- (a) Find and sketch the domain of f.
- (b) Sketch the level curve f(x, y) = 2.
- 3. Find an equation for the level curve of the function $F(x,y) = \frac{2y-x}{x+y+1}$ passing through (-1,1).
- 4. Find the equation for the level surface of the function $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ passing through (1,1,1).

- 1. (a) Domain: $\{(x,y) \mid x-y-1 \ge 0\}$
 - (b) Domain: $\{(x,y) \mid (x-4)(y^2-1) \ge 0\}$
 - (c) Domain: $\{(x,y) \mid 4x^2 1 \le y \le 4x^2 + 1\}$
 - (d) Domain: $\{(x,y) \mid x^2 + y^2 \neq 4\}$
 - (e) Domain: $\{(x,y) \mid x^2 + y^2 < 4, \quad x^2 + y^2 \neq 3\}$
- 2. (a) Domain: $\{(x,y) \mid xy \le 1\}$
 - (b) $\sqrt{1-xy}=2 \implies y=-\frac{3}{x}$.
- 3. y = -4x 3, $(x, y) \neq (-\frac{2}{3}, -\frac{1}{3})$.
- $4. \ x^2 + y^2 + z^2 = 3$

Math 2550 Worksheet Section 14.2

- 1. Let $f(x,y) = \frac{x-2y}{x^3-8y^3}$. Find $\lim_{(x,y)\to(2,1)} f(x,y)$ or show it does not exist.
- 2. Let $f(x,y) = \frac{\sqrt{2x-y}-2}{2x-y-4}$. Find $\lim_{(x,y)\to(2,0)} f(x,y)$ or show it does not exist.
- 3. At what points (x, y) in the plane is $f(x, y) = \cos\left(\frac{1}{xy}\right)$ continuous?
- 4. At what points (x, y, z) is $h(x, y, z) = \frac{1}{1 \ln(x^2 + y^2 + z^2)}$ continuous?

- 1. $\frac{1}{12}$.
- $2. \frac{1}{4}.$
- 3. $\{(x,y)|x \neq 0, y \neq 0\}$
- 4. $\{(x,y)|x^2+y^2+z^2>0, x^2+y^2+z^2\neq e\}$

Math 2550 Worksheet Section 14.3

1. Find f_x and f_y for:

(a)
$$f(x,y) = \left(xy + \frac{y}{3}\right)^{3/2}$$

(b)
$$f(x,y) = e^{x^2 y} \ln x$$

(c)
$$f(x,y) = \sum_{n=0}^{\infty} (xy)^n$$
 $(|xy| < 1)$

- 2. Find f_x , f_y , and f_z for the function $f(x, y, z) = z^{x^y}$ (x > 0, y > 0, z > 0).
- 3. Let $f(x,y) = x^2y^2$. Find $f_y(a,b)$ using the limit definition of the partial derivative.
- 4. Find all the second partial derivatives for $f(x,y) = e^x + x \ln y$.

1. (a)
$$f_x = \frac{3}{2}y(xy + \frac{y}{3})^{1/2}$$
, $f_y = \frac{3}{2}(xy + \frac{y}{3})^{1/2}(x + \frac{1}{3})$

(b)
$$f_x = 2xye^{x^2y} \ln x + \frac{e^{x^2y}}{x}$$
, $f_y = x^2e^{x^2y} \ln x$

(c)
$$f_x = \frac{y}{(1-xy)^2}$$
, $f_y = \frac{x}{(1-xy)^2}$

2.
$$f_x = x^{y-1}yz^{x^y} \ln z$$
, $f_y = x^y \ln x \cdot z^{x^y} \ln z$, $f_z = x^yz^{x^y-1}$.

3.
$$2a^2b$$
.

4.
$$f_x = e^x + \ln(y)$$
, $f_y = \frac{x}{y}$, and so $f_{xx} = e^x$, $f_{xy} = \frac{1}{y}$, $f_{yy} = -\frac{x}{y^2}$

Math 2550 Worksheet Section 14.4

1. Find
$$\frac{dw}{dt}$$
 when $t = 1$, if $w = 2ye^x - \ln z$, $x = \ln(t^2 + 1)$, $y = \tan^{-1}(t)$, $z = e^t$.

2. Let
$$w = xy + yz + zx$$
, where $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$.

Find
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial \theta}$ when $r=2$ and $\theta=\frac{\pi}{2}$.

3. Find
$$\frac{dy}{dx}$$
 if $\tan^{-1}(x^2y) = x + xy^2$.

4. Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function w = f(x, y).

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta$$
 and $\frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$

(b) Solve the equations in part (a) to express
$$f_x$$
 and f_y in terms of $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$.

- 1. $\pi + 1$.
- 2. $\frac{\partial \omega}{\partial r} = 2\pi \text{ and } \frac{\partial \omega}{\partial \theta} = -2\pi$ 3. $\frac{x^4 y^4 + x^4 y^2 + y^2 2xy + 1}{-2x^5 y^3 + x^2 2xy}$
- 4. You can do this by using chain rules.

Math 2550 Worksheet Section 14.5

1. Let

$$f(x,y) = x^2y + e^{-x} + e^{xy}\sin y, \qquad P = (1,0).$$

- (a) Find the directions in which the function f increases and decreases most rapidly at P.
- (b) Find all the unit vectors \vec{u} such that the directional derivative $D_{\mathbf{u}}f(P) = 0$.
- 2. Let f(x,y) = xy. Sketch the curve f(x,y) = -4 together with ∇f and the tangent line at (2,-2). Then, find write an equation for the tangent line.
- 3. The directional derivative of some differentiable function f(x,y) at (2,1) in the direction going from (2,1) toward the point (1,3) is $-\frac{2}{\sqrt{5}}$, and the directional derivative of f at (2,1) in the direction going from (2,1) toward the point (5,5) is 1. Compute $f_x(2,1)$ and $f_y(2,1)$.

- 1. (a) The directions in which f increases most rapidly is $\langle \frac{-1}{\sqrt{4e^2+1}}, \frac{2e}{\sqrt{4e^2+1}} \rangle$. The directions in which f decreases most rapidly is $\langle \frac{1}{\sqrt{4e^2+1}}, \frac{-2e}{\sqrt{4e^2+1}} \rangle$.
 - (b) The vectors are $\langle \frac{2e}{\sqrt{4e^2+1}}, \frac{1}{\sqrt{4e^2+1}} \rangle$ or $\langle \frac{-2e}{\sqrt{4e^2+1}}, \frac{-1}{\sqrt{4e^2+1}} \rangle$
- 2. y = x 4.
- 3. $f_x(2,1) = 1.8, f_y(2,1) = -0.1$

Math 2550 Worksheet Section 14.6

1. Find the equations for the tangent plane and normal line at the point $P_0(0,1,2)$ of the surface

$$\cos(\pi x) - x^2 y + e^{xz} + z = 4.$$

2. Let

$$f(x, y, z) = e^x \cos(yz).$$

Estimate the change df in f, where we move ds = 0.1 in the direction $\vec{v} = 2\hat{i} + 2\hat{j} - 2\hat{k}$ from a general point $P_0(x, y, z)$ and in particular at (0, 0, 0).

3. Find parametric equations for the line tangent to the curve of intersection of the surfaces

$$xyz = 1$$
 and $x^2 + 2y^2 + 3z^2 = 6$

at the point (1,1,1).

- 4. Find the linearization of $f(x, y, z) = \tan^{-1}(xyz)$ at (1, 1, 0).
- 5. Find the linearization of the function $f(x,y) = 1 + y + x \cos y$ at $P_0(0,0)$ and find an upper bound for the magnitude |E| of the error in the approximation over the rectangle $R: |x| \le 0.2, |y| \le 0.2$.

- 1. Tangent plane is 2x + z = 2 and normal line is x = 2t, y = 1, z = t + 2.
- 2. $\frac{1}{10\sqrt{3}}$
- 3. x = 1 + 2t, y = 1 4t, z = 1 + 2t
- 4. L = z
- 5. L = 1 + x + y and $E \le 0.016$.

Math 2550 Worksheet Section 14.7

- 1. Find all the local maxima, local minima, and saddle points of $f(x,y) = e^y(x^2 y^2)$.
- 2. Find the absolute maxima and minima of the function $f(x,y) = x^2 xy + y^2 + 1$ on the closed triangular plate bounded by lines x = 0, y = 4, y = x in the first quadrant.
- 3. Among all rectangular boxes of volume 27 cm³, what are the dimensions of the box with the smallest surface area? What is the smallest possible surface area? (assume this occurs at a local min of the surface area function)
- 4. In each case, the origin is a critical point of f and $f_{xx}f_{yy} (f_{xy})^2 = 0$ at the origin, so the Second Derivative Test fails at the origin. Use some other method to determine whether the function f has a maximum, a minimum, or neither at the origin.
 - (a) $f(x,y) = x^2y^2$
 - (b) $f(x,y) = 1 x^2y^2$
 - (c) $f(x,y) = xy^2$
 - (d) $f(x,y) = x^3y^2$
 - (e) $f(x,y) = x^3 y^3$
 - (f) $f(x,y) = x^4 y^4$

- 1. (0,0) is a saddle point and (0,-2) is a minimum.
- 2. Absolute maximum of 17 at (0,4) and (4,4), Absolute minimum of 1 at (0,0).
- 3. $3 \times 3 \times 3$ and 54.
- 4. (a) Minimum is 0 at (0,0).
 - (b) Maximum is 1 at (0,0).
 - (c) Neither.
 - (d) Neither.
 - (e) Neither.
 - (f) Minimum is 0 at (0,0).

Math 2550 Worksheet Section 14.8

- 1. Find the maximum and minimum values of x^2y subject to the constraint $x^2+2y^2=6$.
- 2. Find the point on the plane x + 2y + 3z = 13 closest to the point (1,1,1).
- 3. Find the maximum value that $f(x, y, z) = x^2 + 2y z^2$ can have on the line of intersection of the planes 2x y = 0 and y + z = 0.
- 4. Find the maximum and minimum values of f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 14$.

- 1. Maximum of 4 and minimum of -4.
- 2. $(\frac{3}{2}, 2, \frac{5}{2})$.
- 3. Maximum of $\frac{4}{3}$.
- 4. Maximum of $2\sqrt{105}$ and minimum of $-2\sqrt{105}$.

Math 2550 Worksheet Section 15.1 and 15.2

1. Find
$$\iint_R \frac{xy^2}{x^2+1} dA$$
, $R: 0 \le x \le 1, -3 \le y \le 3$

- 2. Write an iterated integral for $\iint_R dA$ over the region R using vertical cross-sections and horizontal cross-sections.
 - (a) Bounded by $y = e^{-x}$, y = 1, and $x = \ln 3$.
 - (b) Bounded by $y = x^2$ and y = x + 2
- 3. Sketch the region of integration, reverse the order of integration, and evaluate the integral.

(a)
$$\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \cos(x^2) \ dx \ dy$$
.

(b)
$$\int_0^8 \int_{\sqrt[3]{x}}^2 e^{y^4} dy dx$$
.

4. Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 2y, x = 0, z = 0 in the first octant.

- 1. $9 \ln 2$.
- 2. (a) Using vertical cross-section, we get

$$\int_0^{\ln 3} \int_{e^{-x}}^1 dy \ dx.$$

Using horizontal cross-section, we get

$$\int_{1/3}^{1} \int_{-\ln y}^{\ln 3} dx \ dy.$$

(b) Using vertical cross-section, we get

$$\int_{-1}^{2} \int_{x^2}^{x+2} dy \ dx.$$

Using horizontal cross-section, we get

$$\int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \ dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \ dy.$$

- 3. (a) 0.
 - (b) $\frac{1}{4}(e^{16}-1)$.
- 4. $\frac{16}{3}$.

Math 2550 Worksheet Section 15.3 and 15.4

1. Sketch the region bounded by

$$y = 1 - x, \quad y = 2, \quad y = e^x$$

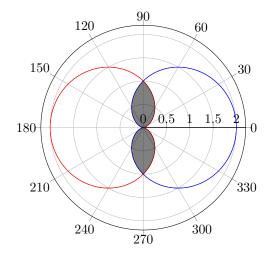
and find the area of of the region.

2. Change the Cartesian integral

$$\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} e^{-x^2-y^2} \ dx \ dy$$

into an equivalent polar integral and evaluate the integral.

- 3. Use polar coordinates to find the volume of the solid above the cone $z=\sqrt{x^2+y^2}$ and below the sphere $x^2+y^2+z^2=1$.
- 4. Find the area of the region common to the interiors of the cardioids $r = 1 + \cos \theta$ and $r = 1 \cos \theta$.



5. Let E be the part of $x^2 + y^2 + z^2 = 4$ when $z \ge 0$ and $y \ge 1$. Find the volume of E via polar integral.

1.
$$2 \ln 2 - \frac{1}{2}$$
.

2.
$$\frac{\pi}{2}(1-e^{-4})$$

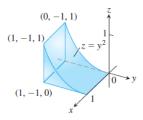
2.
$$\frac{\pi}{2}(1 - e^{-4})$$
.
3. $\frac{\pi}{3}(2 - \sqrt{2})$.

4.
$$\frac{3\pi}{2} - 4$$
.

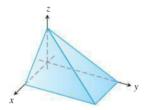
5.
$$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \int_{\frac{1}{\sin \theta}}^{2} \sqrt{4 - r^2} \ r \ dr \ d\theta$$

Math 2550 Worksheet Section 15.5

- 1. Evaluate $\iiint_E z dV$, where E is the solid tetrahedron bounded by the four planes x=0, y=0, z=0, and x+y+z=1. Include a sketch of the solid.
- 2. Set up integrals that would calculate the volume of the region below, using the specified orders of integration.



- (a) dy dz dx (b) dy dx dz (c) dx dy dz (d) dx dz dy (e) dz dx dy
- 3. Find the volume of the region in the first octant bounded by the coordinate planes and the planes x + z = 1 and y + 2z = 2.



4. Evaluate the integral

$$\int_0^{\pi/2} \int_0^y \int_0^x \cos(x + y + z) \ dz \ dx \ dy$$

- 1. $\frac{1}{24}$.
- 2. (a) $\int_0^1 \int_0^1 \int_{-1}^{-\sqrt{z}} dy \ dz \ dx$
 - (b) $\int_0^1 \int_0^1 \int_{-1}^{-\sqrt{z}} dy \ dx \ dz$
 - (c) $\int_0^1 \int_{-1}^{-\sqrt{z}} \int_0^1 dx dy dz$
 - (d) $\int_{-1}^{0} \int_{0}^{y^{2}} \int_{0}^{1} dx dz dy$
 - (e) $\int_{-1}^{0} \int_{0}^{1} \int_{0}^{y^{2}} dz dx dy$
- 3. $\frac{2}{3}$.
- 4. $-\frac{1}{3}$.

Math 2550 Worksheet Section 15.7

- 1. Convert the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2+y^2) dz dx dy$ into an integral in cylindrical coordinates, and evaluate the integral.
- 2. Let D be the right circular cylinder whose base is the circle $r = 2\sin\theta$ in the xy-plane and whose top lies in plane z = 4 y. Recall that $r = 2\sin\theta$ describes a circle centered at (0,1) with radius 1 in the xy-plane. Using cylindrical coordinates,
 - (a) find the volume of the region D.
 - (b) find the \bar{x} component of the centroid of the region (hint: use symmetry).
- 3. Find the volume of the solid that is between the spheres $\rho = \sqrt{2}$ and $\rho = 2$, but outside of the circular cylinder $x^2 + y^2 = 1$.
- 4. Suppose $a \ge 0$. Find the volume of the region cut from the solid sphere $\rho \le a$ by the half-planes $\theta = 0$ and $\theta = \pi/6$ in the first octant.

- 1. $\frac{2}{5}$. 2. (a) 3π .
 - (b) $\bar{x} = 0$.
- 3. $\frac{12\sqrt{3} 4}{3}\pi$.
 4. $\frac{a^3\pi}{18}$.

Math 2550 Worksheet Section 15.8

1. Let R be the parallelogram in the first quadrant bounded by the lines

$$y = -2x + 4;$$
 $y = -2x + 7;$ $y = x - 2;$ $y = x + 1.$

Evaluate

$$I = \int \int_{R} 2x^2 - xy - y^2 \, dx \, dy$$

by using the transformation u = x - y and v = 2x + y in the following steps:

- (a) Sketch R.
- (b) Solve for x, y in terms of u, v.
- (c) Describe the region in the uv-plane that corresponds to R.
- (d) Find the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$.
- (e) Use the substitution rule for double integrals to evaluate I.
- 2. Use the transformation $x = u^2 v^2$ and y = 2uv to evaluate the integral

$$\int_0^1 \int_0^{2\sqrt{1-x}} \sqrt{x^2 + y^2} \ dy \ dx.$$

3. Let R be the region in the first quadrant of the xy-plane bounded by

$$xy = 4;$$
 $xy = 16;$ $y = x;$ $y = 4x.$

Use the transformation x = u/v and y = uv with u > 0 and v > 0 to evaluate

$$\int \int_{R} \left(\frac{y}{x}\right)^2 + \frac{1}{xy} \ dx \ dy.$$

- 1. (e) $\frac{33}{4}$.
- 2. $\frac{56}{45}$.
- 3. $45 + 2(\ln 2)^2$.