Taker Name:

GTID: 903

Section:

N

Grader #1:

GTID: 903

§14.8: Constrained optimization

Find the closest points on the curve to the origin.

54 = 33+2 27 2 = 9*6

 $xu^2 = 54$

d(x, y)= [x2+4] distance of (x14) to (0,0).

minimize f(x,y) = x2 = x2 = in stend.

Subject to constraint $g(x,y) = xy^2 = 54$ -

 $\nabla f = \begin{bmatrix} 2n \\ 24 \end{bmatrix}$ and $\nabla g = \begin{bmatrix} y^2 \\ 2ny \end{bmatrix}$

Solve $57f = \lambda 09$ $\int 02x = \lambda 4^2$ g = k $02y = \lambda 2xy$ $3xy^2 = 54$

From @ y=0 or lx=1

Case 1: y=0. This is impossible since by

constraint @ xy2=54, so x to and y to.

case 2: Ax=1 Then x =0 and d=1/x, from D 2x= xy2

Sub more @ get 2x3=54 => x3=27 => x=3

So $\chi=3$ and $y^2=5\frac{1}{3}=18$ So $y=\pm \sqrt{18}=\pm 3\sqrt{2}$.

Closest points are (3,352) & (3,-352)