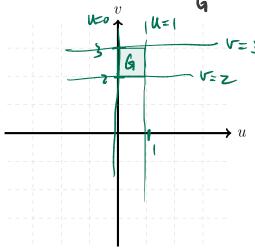
Taker Name:

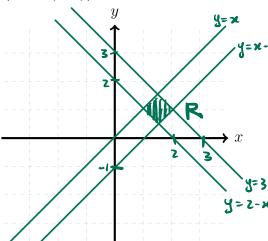
GTID: 903

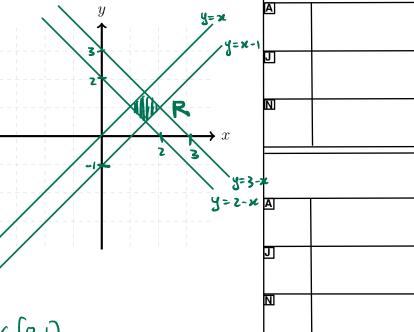
Section:

N

Grader #1:


GTID: 903




Let u = x - y and v = x + y. Set up but do NOT evaluate

$$M = \iint_R x + y \, dA$$

where R is the region in the first quadrant bounded by the lines x - y = 0, x-y=1, x+y=2, x+y=3. On the axes below, (a) sketch the new region of integration G after the change of variables and the original region R, (b) find the transformation $\mathbf{T}(u,v)=(x,y)$ and (c) compute the Jacobian determinant $|\det \mathbf{T}(u,v)|$. Finally, (d) write the new iterated integral after the change of coordinates $\iint \int f(\mathbf{T}(u,v)) | \det \mathbf{T}(u,v) | du dv$.

(a)
$$x-y=u=0$$

to $x-y=u=1$ So $u \in (0,1)$

and
$$x+y=v=2$$
 So $v\in [2,3)$
 $+x+y=v=3$

(b)
$$\chi - y = u$$
 \Rightarrow $Z\chi = u + v$ \Rightarrow $\chi = \frac{u + v}{z}$ $\uparrow ([u]) = [u + v]_{z}$ $\downarrow z$ $\downarrow z$