$\begin{array}{c} {\rm MATH~2550~G/J~Midterm~1}\\ {\rm VERSION~A}\\ {\rm Fall~2025}\\ {\rm COVERS~SECTIONS~12.1-12.6,~13.1-13.4,~14.1-14.2} \end{array}$

Full name:	GT ID:
Honor code statement: I will abide strictly by will not use a calculator. I do not have a phone website, application, or other CAS-enabled service during this exam. I will not provide aid to anyone	e within reach, and I will not reference any e. I will not consult with my notes or anyone
() All of the knowledge presented in this exaleft to attest to my integrity.	m is entirely my own. I am initialing to the
Read all instructions carefully before beginni	ng.

- Print your name and GT ID neatly above.
- You have 50 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work [J] and annotate your work using proper notation [N].
- Good luck!

Question	Points
1	2
2	10
3	12
4	10
5	8
6	8
Total:	50

For T/I	F problei	ms choose	whether	the s	statem	ent is	${\rm true}$	or fa	alse. If	the	staten	nent	is o	always
true, pi	ck true.	If the sta	tement is	ever	false,	pick f	false.	Also	please	be	sure to	o nea	atly	fill in
the bub	ble corre	esponding	to your a	nswei	r choice	e.								[A]

- 1. (2 points) If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^3 , then $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.
 - \bigcirc TRUE \bigcirc FALSE
- 2. (10 points) Find the equation of the plane passing through the point P(1, 1, 0) which contains the lines $\ell_1(t) = \langle 1, 1, 0 \rangle + t \langle 1, 3, -1 \rangle$ and $\ell_2(s) = \langle 1, 2, -1 \rangle + s \langle 0, 1, -1 \rangle$, $s, t \in \mathbb{R}$. [AJN]

		[]

3. (12 points) Let $\mathbf{r}(t) = \langle \cos^3 t, \sin^3 t \rangle$, $0 \le t \le \pi/2$. Find the curve's unit tangent vector $\mathbf{T}(t)$ and the length of the curve parametrized by $\mathbf{r}(t)$. [AJN]

length is

4. (10 points) In this problem, you will work with the helix curve

$$\mathbf{r}(t) = \sin(3t)\mathbf{i} + \cos(3t)\mathbf{j} + t\mathbf{k}$$

for $0 \le t \le 2\pi$. [AJN]

- (a) Compute the principal unit normal vector $\mathbf{N}(t)$.
- (b) Compute the curvature $\kappa(t)$.

$$\kappa(t) =$$

5. (8 points) Draw a contour map on the axes provided including all three of the level curves g(x,y)=c for the function

$$g(x,y) = 20 - \frac{1}{2}x^2 - \frac{1}{2}y^2$$
, $c = 2, 12, 18$.

Show your work for how you find the equation of each level set, include labels for the axes, and label each level set as well as an x-intercept and y-intercept of each level set. [AJN]

6. (8 points) Show that the limit does not exist. To receive full credit, you must show work supporting your answer, use proper limit notation, and mention the test that you are using.

[AJN]

$$\lim_{(x,y)\to(0,0)} \frac{xy}{|xy|}$$

FORMULA SHEET

•
$$\langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$$

•
$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

•
$$\langle u_1, u_2, u_3 \rangle \times \langle v_1, v_2, v_3 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

•
$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}||\sin(\theta)|$$

•
$$L = \int_a^b |\mathbf{r}'(t)| dt$$

•
$$s(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| \ d\tau$$

•
$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{d\mathbf{r}}{ds}$$

•
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right| = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$$

•
$$\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}$$

SCRATCH PAPER - PAGE LEFT BLANK