MATH 2550 G/J Midterm 2 Make-up VERSION C Fall 2025 COVERS SECTIONS 14.3-14.8, 15.1-15.4

Full name:	GT ID:
Honor code statement: I will abide strictly by the Geor I will not use a calculator. I do not have a phone within r website, application, or other CAS-enabled service. I will no during this exam. I will not provide aid to anyone else during	each, and I will not reference any ot consult with my notes or anyone
() All of the knowledge presented in this exam is entire left to attest to my integrity.	ely my own. I am initialing to the
Read all instructions carefully before beginning.	

- Print your name and GT ID neatly above.
- You have 50 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work [J] and annotate your work using proper notation [N].
- Good luck!

Question	Points
1	2
2	6
3	7
4	7
5	8
6	10
7	10
Total:	50

For problems 1-2 choose whether each statement is true or false. If the statement is *always* true, pick true. If the statement is *ever* false, pick false. For all problems on this page please be sure to neatly fill in the bubble corresponding to your answer choice. [A]

1. (2 points) If f(x,y) = 1 for all (x,y) in $R = [3,6] \times [1,4]$, then the value of $\int_{1}^{4} \int_{3}^{6} f(x,y) \, dy \, dx$ equals the value of $\int_{3}^{6} \int_{1}^{4} f(x,y) \, dy \, dx$.

 \bigcirc TRUE \bigcirc FALSE

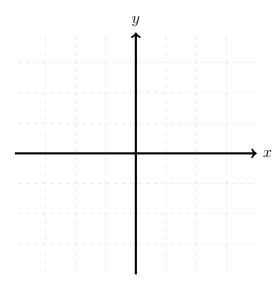
2. (6 points) Compute f_{xx} and f_{yx} for the function $f(x,y) = x \sec(y) + \frac{y}{x}$. [AJN]

 $f_{xx} =$

 $f_{yx} =$

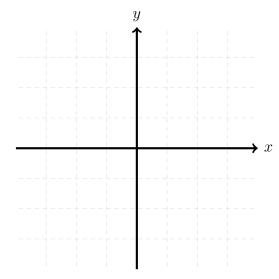
3. (7 points) Sketch R the region of integration and switch the order of integration. That is, rewrite the integral in the order dx dy. Do not evaluate! [AN]

$$\int_0^1 \int_0^{3x} y \, dy \, dx$$



4. (7 points) Sketch R the region of integration and set up an integral in polar coordinates for evaluating $\iint_R f(x,y) \ dA$. Note that R is the region inside the circle of radius r=3 which is under the line y=x. Do not evaluate! [AN]

$$R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9, \ y \le x\}, \text{ and } f(x,y) = xy.$$

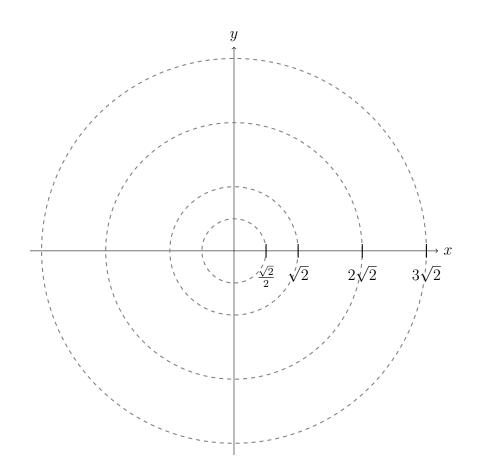


Volume=

5. (8 points) Use the function z = f(x, y) and the point P to answer the questions below. [AJN]

$$f(x,y) = 2\ln(x^2 + y^2)$$
 and $P(2,-2)$

- (a) Find the gradient ∇f of f.
- (b) Find the directional derivative $D_{\mathbf{u}}f$ of f in the direction of $\mathbf{u}=\langle 1,3\rangle$ at P(2,-2).
- (c) Find a unit vector \mathbf{v} which points in the direction which maximizes the value of $D_{\mathbf{u}}f$ at P(2,-2).
- (d) Sketch P(2,-2) and the gradient vector $\nabla f(P)$ on the axes provided.



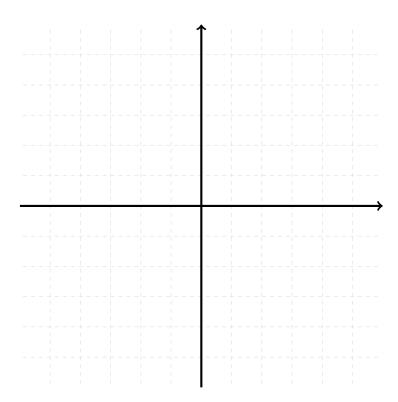
6. (10 points) Evaluate $\frac{\partial W}{\partial t}$ at the point (s,t)=(1,1).

[AJN]

$$W = xy + e^{3x}, \ x = s + 2t, \ y = \ln 3t.$$

7. (10 points) Sketch the domain R including all labels on the axes provided, and find the absolute maxima and minima of the function $f(x,y) = x^2 + 2x + y^2 + 2y$ on R.

 $R = \left\{ (x,y) \in \mathbb{R}^2 \mid 0 \leq x \leq 2, -2 \leq y \leq 2 \right\} \text{ is the rectangle with vertices } (0,\pm 2), \ (2,\pm 2).$



FORMULA SHEET

• Total Derivative: For $\mathbf{f}(x_1, \dots, x_n) = \langle f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n) \rangle$

$$D\mathbf{f} = \begin{bmatrix} (f_1)_{x_1} & (f_1)_{x_2} & \dots & (f_1)_{x_n} \\ (f_2)_{x_1} & (f_2)_{x_2} & \dots & (f_2)_{x_n} \\ \vdots & \ddots & \dots & \vdots \\ (f_m)_{x_1} & (f_m)_{x_2} & \dots & (f_m)_{x_n} \end{bmatrix}$$

- Linearization: Near \mathbf{a} , $f(\mathbf{x}) \approx L(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{x} \mathbf{a})$
- Chain Rule: If $h = g(f(\mathbf{x}))$ then $Dh(\mathbf{x}) = Dg(f(\mathbf{x}))Df(\mathbf{x})$
- Implicit Differentiation: If z is implicitly given in terms of x and y by F(x, y, z) = c, then $\frac{\partial z}{\partial x} = \frac{-F_x}{F_z}$ and $\frac{\partial z}{\partial y} = \frac{-F_y}{F_z}$.
- Directional Derivative: If **u** is a unit vector, $D_{\mathbf{u}}f(P) = Df(P)\mathbf{u} = \nabla f(P) \cdot \mathbf{u}$
- The tangent line to a level curve of f(x,y) at (a,b) is $0 = \nabla f(a,b) \cdot \langle x-a,y-b\rangle$
- The tangent plane to a level surface of f(x, y, z) at (a, b, c) is

$$0 = \nabla f(a, b, c) \cdot \langle x - a, y - b, z - c \rangle.$$

- Hessian Matrix: For f(x,y), $Hf(x,y) = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{bmatrix}$
- Second Derivative Test: If (a, b) is a critical point of f(x, y) then
 - 1. If det(Hf(a,b)) > 0 and $f_{xx}(a,b) < 0$ then f has a local maximum at (a,b)
 - 2. If det(Hf(a,b)) > 0 and $f_{xx}(a,b) > 0$ then f has a local minimum at (a,b)
 - 3. If det(Hf(a,b)) < 0 then f has a saddle point at (a,b)
 - 4. If det(Hf(a,b)) = 0 the test is inconclusive
- Area/volume: area $(R) = \iint_R dA$
- Trig identities: $\sin^2(x) = \frac{1}{2}(1 \cos(2x)), \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- Average value: $f_{avg} = \frac{\iint_R f(x, y) dA}{\text{area of } R}$
- Polar coordinates: $x = r\cos(\theta)$, $y = r\sin(\theta)$, $dA = r dr d\theta$

SCRATCH PAPER - PAGE LEFT BLANK