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MATH 2550 G/J w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.4, 12.5

e Set classroom norms
e Describe the big-picture goals of the class
e Review R? and the dot product

e Introduce the cross product and its properties
Class Values/Norms:

e Mistakes are a learning opportunity

Mathematics is collaborative

Make sure everyone is included

Criticize ideas, not people

Be respectful of everyone
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Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?
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Before: we studied single-variable functions f : R — R like f(z) = 222 — 6.

Now: we will study multi-variable functions f : R” — R": each of these functions
is a rule that assigns one output vector with m entries to each input vector with n
entries.
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§12.1: Three-Dimensional Coordinate Systems
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uestion: What shape is the set of solutions (z, v, 2) € R? to the equation 2241y? =
Yy Yy
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§12.3, 12.4: Dot & Cross Products z

Definition 1. The dot product of two vectors u :@, Ug, . .. ,u,}and v =

(V1,V9, ..., Uy,) is

v WUV 3.0 . FUnVa

This product tells us about M\'ﬁ\pg ?1 Os *&a@%,
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In particular, two vectors are orthogonal if and only if their dot product is Q

Example 2. Are u = (1,1,4) and v = (=3, —1, 1) orthogonal?

UV = ()(-2) « (D) +(axh) = -3-cey
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Goal: Given two vectors, produce a vector orthogonal to both of thém in a “nice”
way.
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>
Example 5. You try it/ Find (2,1,0) x (1,2,1). = (,))
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Some common [AJN] things to look out for. wa ’&'° (W-

[A] Accuracy

e simplify answer

e box answer

[J] Justification

e minus sign on j component

e show intermediate steps

[N] Notation

e use = sign for expressions that are equal

e vector notation vs. point notation
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The cross product u x v is the vector

u x v = (Jul|v|sinf)n
\,U&An—

where n is a unit vector which is normal to the plane spanned by u and W

Since n is a unit vector, the magnitude of u x v is the area of the parallelogram
spanned by u and v.

lu x v| = |u||v|sin@

Example 5. Find the area of the parallelogram determined by the points P, @),
and R.
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