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§12.5 Lines & Planes

Lines in R?, a new perspective: - (s
M= slop —_—

WS — e
. A=t bz o sereps ok

< 2=90
o 0,49 dowTie e at  all powmss
OF Twe Larunn

e 7% )= o+ 5, teR

7\10.&\-05 RQauoyon oF Twe We.

Example 7. Find a vector equation for the line that goes through the points P =
(1,0,2) and @ = (—2,1,1). \
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Planes in R?

Conceptually: A plane is determined by either three points in R? or by a single
point and a direction n, called the normal vector.
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Algebraically: A plane in R? has a linear equation (back to Linear Algebra! im-
posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)
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Example 8. Consider the planes y — z = —2 and x — y = 0. Show that the planes
intersect and find an equation for the line passing through the point P = (—8,0, 2)
which is parallel to the line of intersection of the planes.
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Example 9. You try it/ Find the plane containing the lines parameterized by

((t) = (1,1,1) +t(2,1,0), —00 <t <00
l(s) = (0,—1,0) + s(1,2, 1), —00 < § < 00

Give your answer in the form Az+By+Cz = D or a(x—x¢)+b(y—yo)+c(z—2p) = 0.
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§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R? and R? as well. We said that a function r : R — R?
with r(f) = vt + ro produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number ¢ and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:
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Given a fixed curve C' in space, producing a vector-valued function r whose graph is

C is called m%ﬁe curve (', and r is called a?w‘{'\’a o0 of

C.
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Example 10. Consider ri(t) = (cos(t),sin(t),t) and ro(t) = (cos(2t),sin(2t), 2t),
each with domain [0, 27]. What do you think the graph of each looks like? How are
they similar and ho&zare they different?
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:
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Example 11. Compute hm(t 2,1n(t)).
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And with continuity:
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And with derivatives: ([ ; ((\- t L6> - <4" [‘!7) }J’\ &')7

Example 13. If r(t) = (2t — 1 + 1,¢ — 1), find r'(¢).
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Interpretation: If r(¢) gives the position of an object at time ¢, then
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Example 14. Find an equatlon of the tangent line to r(¢ (2t — ltz +1,t—1)
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Let’s see this graphically
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Exampje 14 (cont.) Find an equation of the tangent line to r(t) = (2t—1t*+1,t—1)
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And with integrals:

\
+
Example 15. Find fol(t,e2t,se(32(t)> dt. = <‘;f?/ -% e_z / 'ta"\ ‘b>
o)
— L A2
- <; , 7,8./ ‘éou\(\)> -/ 0,5, 0>

tan 0

— A LA
(% Lé-3,

At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by
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If he also knows that he started at the point&(0) = (0,0, 0),
use calculus to reconstruct his flight path.
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