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Definition 34. A F\M\C:h’Of\ of m vaciap\es is a rule that

assigns to each :tc;g\gz of real numbers (z,y,z) in a set D a
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We can still think about the domain and range of these functions. Instead of level

curves, we get level surfaces. .
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Example 35. Describe th¥domain of the function flx,y,2) =

f:D — R, where D C R?
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Example 36. Describe the level surfaces of the function g(x,y, z) = 22% + 3> + 22.
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§14.2 Limits & Continuity EXCWW, A

Definition 37. What is a limit of a function of two variables? YA one_
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We won’t use this definition much: the big idea is that ( )lir(n | f(x,y) = L if and
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Definition 38. A function f(x,y) is continuous at (xg,yg) if
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Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous
functions results in another continuous function.
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Example 39. Evaluate (:c,yl)iiré, 2;:_ yy_ Y if it exists. Cheche @ C‘)ltcn': (?,o)
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Example 40. You try it/ Evaluate lim cosy+ 1

—— if it exists.
(z,y)—>(%,0) Yy —SInx



§14.2 Page 35

cosy + 1

Example 40. You try it/ Evaluate  lim , if it exists.
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Sometimes, life is harder in R? and limits can fail to exist in ways that are very
different from what we’ve seen before.

Big Idea: Limits can behave differently along different paths of approach
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Example 41. Evaluate lim if it exists. Here is its graph.
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This idea is called the two-path test:
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which S L \ takes on two different values, then
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Example 42. Show that the limit

2
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(z,y)—(0,0) T* 4+ y

does not exist. TV‘\] @ #=0
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4

Example 43. You try it/ Show that the limit  lim I
(.9)—(0,0) T4 + y?
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Example 43. You try it/ Show that the limit  lim I
(z)=(00) T* + Y

two-path test.F‘C‘\-ﬁ- “ “'n) -"\»O Mbo\&j .
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Example 44. [Challenge:] Show that the limit M
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does exist using the Squeeze Theorem.

Theorem 45 (Squeeze Theorem). If f(z,y) = g(x,y)h(x,y), where
lim, )0 9(2,y) = 0 and |h(z,y)| < C for some constant C' near (a,b), then

im0y f(2,9) = 0.
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Spring 2024 Sections 12.1-6, 13.1-4, 14.1-2 February 5, 2024

Math 2551 Worksheet 8 - Review for Exam 1

1. Set up the integral to find the arc length of the curve y = e® from the point (0, 1) to the
point (1,e). Focus on finding a parameterization, and on what values of ¢ give these two
points. Is this an integral you would want to compute? Why or why not?

2. Parameterize the line tangent to the curve
r(t) = (cos?(t),sin(t) cos(t), cos(t))
at the point where t = /2.
3. Compute the unit tangent vector T(¢) and the unit normal vector N(¢) to the circle
r(t) = (2cos(t),2sin(t)).
Before checking, should the normal vector be pointing into or out of the circle? Why?

4. We have seen that the curvature of a circle with radius a is 1/a. Thinking about the
geometry of a helix with radius a, do you think its curvature will be greater than or less
than 1/a? Why? Compute the curvature using the parameterization

r(t) = (acos(t),t,asin(t))
to confirm or challenge your intuition.

5. The function £(t) below describes a line. There is a particular plane that £(¢) is normal
to at the point t = 0. Find an equation of this plane.

0(t) = (3 — 3,2+ t, —21).

Where does this line intersect the different plane 3x — y 4+ 22 = =77

6. Find and sketch the domain of each of the following functions of two variables:

(a) VI— 2+ /7 =1
(b) arcsin(z? + y* — 2)

(¢) /16 — 22 — 4y?

7. Solve the differential equation below, together with its given initial conditions. Remember
that this means finding all functions r(¢) which satisfy the given equations.

1
r(t) =2i+6tj+ —=k, r'(1)=2i+3j+k, r(l)=i+]
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8. Let f(z,y) = (2% — y?)/(2® + 9?) for (z,y) # (0,0). Is it possible to define f(0,0) in a
way that makes f continuous at the origin? Why?



