Definition 34. A function of three variables is a rule that assigns to each triple of real numbers (x,y,z) in a set D a denoted by f(x,y,z).

 $f:D o\mathbb{R}, ext{ where }D\subseteq\mathbb{R}^3$ W=f(x,y,z) Thes...

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 35. Describe the domain of the function $f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}$.

The only issue is \div by O. So need to avoid $4-\chi^2-y^2-z^2=0$ $\Rightarrow 4=\chi^2+y^2+z^2$ So Define all of \mathbb{R}^2 except the sphere of radius $2 \quad \text{Centred} \quad \text{at } (0,0,0).$

Example 36. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.

@
$$k=1$$
 $1=2x^2+y^2+z^2$ ellipsoid
@ $k=0$ $0=2x^2+y^2+z^2$ a point
@ $k=-1$ $-1=2x^2+y^2+z^2$ no sourtion.
& k0 also no soin.
& ellipsoids that are bygger (smaller.

§14.2 Limits & Continuity Fxam 4

Definition 37. What is a limit of a function of two variables?

DEFINITION We say that a function f(x, y) approaches the **limit** L as (x, y)approaches (x_0, y_0) , and write

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

$$|f(x, y) - L| < \epsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

20m.

We won't use this definition much: the big idea is that \lim f(x,y) = L if and $(x,y) \rightarrow (x_0,y_0)$ only if f(x,y) is close to C____ regardless of how we approach $(x_0, y_0).$

From Calc I. lim fix = L

and lim f(x)=[

Definition 38. A function f(x,y) is **continuous** at (x_0,y_0) if

1. (24) -> (26/4) = L Should

2. +(x0,40) ex-sts

3. The two values should be equal.

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function.

$$f_{\lambda}(\chi, y) = \chi$$

eig.
$$f(x_{14}) = x_{14}$$

 $f(x_{14}) = x_{14}$

Example 39. Evaluate $\lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4}$, if it exists.

$$f(2,0) = \frac{\sqrt{4-0-2}}{4-0-4} = \frac{2-2}{4-0} = \frac{0}{0}$$
 DNE.

tangent D'Ho?

|m| $\sqrt{2}z^{-2} = |m|$ $\frac{1}{25\pi^{-0}} = |m|$ $\frac{1}{25\pi} = \frac{1}{4}$ |x-4| |x-4|

 $\frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{$

Try @ Suce not some how to senalize O.

 $\sqrt{2x-y} - 2 + \sqrt{2x-y} + 2$ (x+y) + (2,0) $\sqrt{2x-y} - 4 + \sqrt{2x-y} + 2$

= 1 (m) 2 x - 4 - 4 (2x - 4 - 4) (52 x - 4 + 2)

§14.2 Page 35

Example 40. You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)} \frac{\cos y+1}{y-\sin x}$, if it exists.

§14.2

Example 40. You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)} \frac{\cos y+1}{y-\sin x}$, if it exists.

$$|\sin \frac{\cos y + 1}{y - \sin x}| = \frac{\cos(0) + 1}{0 - \sin(\pi z)} = \frac{1 + 1}{0 - 1} = \frac{z}{-1}$$

§14.2 Page 36

Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before.

Big Idea: Limits can behave differently along different paths of approach

Example 41. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$, if it exists. Here is its graph.

This idea is called the two-path test:

If we can find $\frac{1}{1}$ takes on two different values, then $\frac{1}{1}$

3:30 Phor 109 Page 27:~ J

Uiz Z due Friday in Gudescope.

Example 42. Show that the limit

$$\lim_{(x,y)\to (0,0)} \frac{x^2y}{x^4+y^2}$$

does not exist.

Try @ 2=0

|w| = |w| = |w| = 0 $|x|y \to |x|y|^2 = 0$

Try @ 4=0 ditto 0 V

Toy @ y=mn

(x14) -> (010) X4+45 (x1/wx) -> (010) X4+M5x5

 $= \lim_{\chi \to 0} \frac{\chi^{3}}{\chi^{3}} + \frac{m}{\chi + \frac{m^{2}}{\chi}} = 0.$

try ey=x2

 $|m| \frac{\chi^2 y}{\chi^4 + \chi^2} = |m| \frac{\chi^4 + (\chi^2)^2}{\chi^4 + (\chi^2)^2}$

 $= \lim_{x \to 0} \frac{x^x}{2x^x} = \frac{1}{2} \sqrt{2x^x}$

The two-path test the

 $\S 14.2$ Page 38

Example 43. You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ is DNE by using the two-path test. Hint: try two parabolis.

(2) @
$$y = x^2$$

 $|m| \qquad 2^{4} = |m| \qquad 2^{4} = |m| \qquad 2^{4}$
 $(x_{14}) \to (x_{1}) \to (x_{1}) \to (x_{2}) \to (x_{1}) \to (x_{2}) \to (x_$

by the two-path test
The limit is PNE

§14.2

Example 43. You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+u^2}$ is DNE by using the two-path test. Hint: try two purbols.

$$f(\pi, y) = \frac{\chi^4}{\chi^4 + y^2}$$

$$f(x,y) = \frac{\chi^4}{\chi^4 + y^2}$$
 Let $y = m\chi^2$

Then
$$f(x, mx^2) = \frac{\chi^4}{\chi^4 + m^2 \chi^4} = \frac{1}{1 + m^2}$$
.

So
$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{1+m^2}$$
.

Joesnit hays

Example 44. [Challenge:] Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4 + y^2}$$

the Rt 22
200 points
Zero points

does exist using the Squeeze Theorem.

Theorem 45 (Squeeze Theorem). If f(x,y) = g(x,y)h(x,y), where $\lim_{(x,y)\to(a,b)}g(x,y)=0$ and $|h(x,y)|\leq C$ for some constant C near (a,b), then $\lim_{(x,y)\to(a,b)}f(x,y)=0$.

dea $f(x_{i},y) = \frac{\chi(4y)}{\chi(4y)^2} = \frac{\chi}{\chi(4y)^2}$ Snow goes to from $\frac{\chi}{\chi(4y)}$

(1)
g(xy) = y tend to zero as y >0 /

② notice $y^2 7.0$ So $2x^4 + y^2 = 2x^4$ $\Rightarrow 12 - \frac{24}{100}$

So $h(x,y) \leq 1 = C$ So h(x,y) = 0 h(x,y) = 0

by () & (2) f(x14) = g(x,4) + h(x14) fends to C as (x14) -> (0,0).

Math 2551 Worksheet 8 - Review for Exam 1

- 1. Set up the integral to find the arc length of the curve $y = e^x$ from the point (0,1) to the point (1,e). Focus on finding a parameterization, and on what values of t give these two points. Is this an integral you would want to compute? Why or why not?
- 2. Parameterize the line tangent to the curve

$$\mathbf{r}(t) = \langle \cos^2(t), \sin(t)\cos(t), \cos(t) \rangle$$

at the point where $t = \pi/2$.

3. Compute the unit tangent vector $\mathbf{T}(t)$ and the unit normal vector $\mathbf{N}(t)$ to the circle

$$\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle.$$

Before checking, should the normal vector be pointing into or out of the circle? Why?

4. We have seen that the curvature of a circle with radius a is 1/a. Thinking about the geometry of a helix with radius a, do you think its curvature will be greater than or less than 1/a? Why? Compute the curvature using the parameterization

$$\mathbf{r}(t) = \langle a\cos(t), t, a\sin(t) \rangle$$

to confirm or challenge your intuition.

5. The function $\ell(t)$ below describes a line. There is a particular plane that $\ell(t)$ is normal to at the point t = 0. Find an equation of this plane.

$$\ell(t) = \langle 3 - 3t, 2 + t, -2t \rangle.$$

Where does this line intersect the different plane 3x - y + 2z = -7?

6. Find and sketch the domain of each of the following functions of two variables:

(a)
$$\sqrt{9-x^2} + \sqrt{y^2-4}$$

(b)
$$\arcsin(x^2 + y^2 - 2)$$

(c)
$$\sqrt{16-x^2-4y^2}$$

7. Solve the differential equation below, together with its given initial conditions. Remember that this means finding all functions $\mathbf{r}(t)$ which satisfy the given equations.

$$\mathbf{r}''(t) = 2\mathbf{i} + 6t\mathbf{j} + \frac{1}{2\sqrt{t}}\mathbf{k}, \quad \mathbf{r}'(1) = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}, \quad \mathbf{r}(1) = \mathbf{i} + \mathbf{j}$$

8. Let $f(x,y) = (x^2 - y^2)/(x^2 + y^2)$ for $(x,y) \neq (0,0)$. Is it possible to define f(0,0) in a way that makes f continuous at the origin? Why?