§14.3: Partial Derivatives

Goal: Describe how a function of two (or three, later) variables is changing a point (a,b).

Example 47. Let's go back to our example of the small hill that has height

$$h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

meters at each point (x,y). If we are standing on the hill at the point with (2,1,11/4), and walk due north (the positive y-direction), at what rate will our height change? What if we walk due east (the positive x-direction)?

idee C(2,1) hum does y-change affect the height. $C_{1}=2$ Find $\frac{d}{dy} h(2,y) = ? Pluy <math>m y = 1$.

@
$$\chi=z$$
 $h(2,4) = 4 - \frac{1}{4}(z)^2 - \frac{1}{4}4^2 = 3 - \frac{1}{4}4^2$
 $\frac{3}{4}h = \frac{1}{4}(3-14z) - \frac{1}{4}4$

$$\frac{\partial}{\partial y}h\Big|_{x=z}$$
 $\frac{\partial}{\partial y}\Big(3-\frac{1}{4}y^2\Big)=\frac{1}{2}$ $\frac{\partial}{\partial y}h\Big|_{(z,i)}$ $\frac{\partial}{\partial z}$

@ [7,1] how does X- change affect the hety MA

$$Qy=1$$
 $h(\chi,1)=4-\frac{1}{4}\chi^2-\frac{1}{4}(1)^2=3.75-\frac{1}{4}\chi^2$

$$\frac{\partial}{\partial x} |_{y=1} = \frac{\partial}{\partial x} \left[3.75 - \frac{1}{4} x^2 \right] = -\frac{1}{2} x \quad 0 \quad x=2$$
s investigate graphically.

Let's investigate graphically.

Definition 48. If f is a function of two variables x and y, its _

derivatives

are the functions f_x and f_y defined by

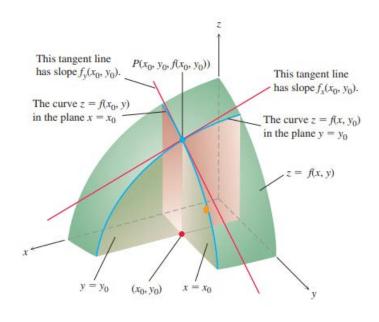
$$f_{\mathbf{y}}(x,y) = \lim_{h \to 0} \frac{f(\mathbf{x}_{\mathbf{y}}, y) - f(\mathbf{x}_{\mathbf{y}})}{h} f_{\mathbf{y}}(x,y) = \lim_{h \to 0} \frac{f(\mathbf{x}_{\mathbf{y}}, y) - f(\mathbf{x}_{\mathbf{y}})}{h}$$

Notations:

$$f_{x} = \frac{\partial}{\partial x} f = \frac{\partial f}{\partial x}$$

$$f_y = \frac{2}{54}f = \frac{2}{54}$$

Interpretations:



E the purtial der water of

f wet x

net 1.

Example 49. Find $f_x(1,2)$ and $f_y(1,2)$ of the functions below.

a)
$$f(x,y) = \sqrt{5x - y}$$

$$f_{\chi} = \frac{3}{5\chi} \left((5\chi - y)^{1/2} \right) = \frac{1}{2} (5\chi - y)^{-1/2} * 5 = \frac{5}{2(5\chi - y)^{1/2}}$$

$$f_{\chi} = \frac{3}{5\chi} \left((5\chi - y)^{1/2} \right) = \frac{1}{2} (5\chi - y)^{-1/2} * (-1) = \frac{-1}{2(5\chi - y)^{1/2}}$$

$$f_{\chi}(1/2) = \frac{5}{2(5-2)^{1/2}} = \frac{5}{253}$$

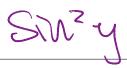
$$f_{\chi}(1/2) = \frac{5}{2(5-2)^{1/2}} = \frac{-1}{253}$$
b) $f(x,y) = \tan(xy)$

$$f_{\chi} = Sec^2(\chi_y) * y$$

 $f_{\gamma} = Sec^2(\chi_y) * \chi$

$$A_{\chi(2,1)} = Sec^{2}(z) \times 1$$

 $A_{\chi(2,1)} = Sec^{2}(z) \times 2$



Question: How would you define the second partial derivatives?

$$f_{XX} = \frac{\partial}{\partial x} f_{X} = \frac{\partial}{\partial x} f_{X} = \frac{\partial^{2} f_{X}}{\partial x^{2}}$$

$$f_{XY} = \frac{\partial}{\partial y} f_{X} = \frac{\partial}{\partial y} f_{X} = \frac{\partial^{2} f_{X}}{\partial y^{2}}$$

$$f_{YX} = \frac{\partial}{\partial x} f_{Y} = \frac{\partial}{\partial x} f_{X} = \frac{\partial^{2} f_{X}}{\partial x^{2}}$$

$$f_{YY} = \frac{\partial}{\partial x} f_{Y} = \frac{\partial}{\partial x} f_{X} = \frac{\partial^{2} f_{X}}{\partial x^{2}}$$

$$f_{YY} = \frac{\partial}{\partial x} f_{X} = \frac{\partial}{\partial x} f_{X} = \frac{\partial^{2} f_{X}}{\partial x^{2}}$$

Example 50. Find f_{xx} , f_{xy} , f_{yx} , and f_{yy} of the function below.

a)
$$f(x, y) = \sqrt{5x - y}$$

$$f_{\chi} = \frac{5}{2\sqrt{5}x - y} = \frac{5}{2}(5x - y)^{-1/2}$$

a)
$$f(x,y) = \sqrt{5x - y}$$

$$f_{\chi} = \frac{5}{2\sqrt{5x - y}}$$

$$f_{\chi} = \frac{5}{2\sqrt{5x - y}}$$

$$f_{\chi} = \frac{-1}{2\sqrt{5x - y}}$$

$$f_{100} = \frac{-5}{4}(5x-4)^{-3/2} * 5 = \frac{-25}{4(5n-4)^{3/2}}$$
 = que partiels (double partiels)

$$f_{xy} = \frac{-5}{4} (5x - y)^{-3/2} * (-1) = \frac{5}{4(5x - y)^{3/2}}$$

$$f_{yy} = \frac{1}{4} (5x - 4)^{-3(2)} (-1) = \frac{-1}{4(5x - 4)^{3/2}}$$

§14.3

What do you notice about f_{xy} and f_{yx} in the previous example?

Theorem 51 (Clairaut's Theorem). Suppose f is defined on a disk D that contains the point (a,b). If the functions f, f_x, f_y, f_{xy} , f_{yx} are all continuous on D, then

fyz=fzy

Corollary fryn = frny = fynn

Example 52. You try it! What about functions of three variables? How many partial derivatives should $f(x, y, z) = 2xyz - z^2y$ have? Compute them.

Fist order

What do you notice about f_{xy} and f_{yx} in the previous example?

Theorem 51 (Clairaut's Theorem). Suppose f is defined on a disk D that contains the point (a, b). If the functions $f, f_x, f_y, f_{xy}, f_{yx}$ are all continuous on D, then

Example 52. You try it! What about functions of three variables? How many partial derivatives should $f(x, y, z) = 2xyz - z^2y$ have? Compute them.

$$f_{x} = 2y_{z} - 0 = 2y_{z}$$

$$f_{y} = 2x_{z} - z^{2}$$

$$f_{z} = 2x_{y} - 2z_{y}$$

Example 53. How many rates of change should the function $f(s,t) = \begin{bmatrix} s^2 + t \\ 2s - t \\ st \end{bmatrix}$

have? Compute them.

$$\frac{\text{Iden}}{\text{f(s,t)}} = \langle \chi(s,t), y(s,t), z(s,t) \rangle$$

For First component

$$\frac{\partial x}{\partial s} = \frac{\partial}{\partial s} \times (s,t) = \frac{\partial}{\partial s} \left(s^2 + t \right) = 2s$$

$$\frac{\partial x}{\partial t} = \frac{\partial}{\partial t} \left(S^2 + t \right) = 1$$

 $\mathcal{X}(S,t) = S^2 + t$

For y-component

$$\frac{\partial s}{\partial t} = \frac{\partial s}{\partial s} (2s - t) = 2$$

$$\frac{\partial t}{\partial y} = \frac{\partial t}{\partial t} (2s - t) = -1$$

For Z

$$\frac{\partial z}{\partial s} = \frac{\partial}{\partial s}(st) = t$$

So, we computed partial derivatives. How might we organize this information?

For any function $f: \mathbb{R}^n \to \mathbb{R}^m$ having the form $f(x_1, \dots, x_n) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_n, \dots, x_n) \end{bmatrix}$,

we have _____ inputs, ____ output, and ____ partial derivatives, which we can use to form the **total derivative**.

This is a _____ map from $\mathbb{R}^n \to \mathbb{R}^m$, denoted Df, and we can represent it with an _____, with one column per input and one row per output.

It has the formula $Df_{ij} =$

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$\mathbf{b})\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$$

c)
$$f(x,y) = \sqrt{5x - y}$$

$$d) f(x, y, z) = 2xyz - z^2y$$

e)
$$\mathbf{f}(s,t) = \langle s^2 + t, 2s - t, st \rangle$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$f: \mathbb{R} \to \mathbb{R}$$

Df has size $|x|$

b) $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

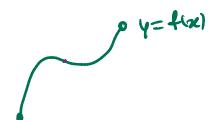
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

In particular, the (total) derivative of **any** function $f : \mathbb{R}^n \to \mathbb{R}^m$, evaluated at $\mathbf{a} = (a_1, \dots, a_n)$, is the linear function that best approximates $f(\mathbf{x}) - f(\mathbf{a})$ at \mathbf{a} .

This leads to the familiar linear approximation formula for functions of one variable: $f(x) \not\approx f(a) + f'(a)(x-a) = \text{Lin}$



Definition 55. The linearization or linear approximation of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ at the point $\mathbf{a} = (a_1, \dots, a_n)$ is

Example 56. Find the linearization of the function $f(x,y) = \sqrt{5x - y}$ at the point (1,1). Use it to approximate f(1.1,1.1).

Question: What do you notice about the equation of the linearization?

We say $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** at **a** if its linearization is a good approximation of f near **a**.

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y) - L(x,y)}{\|(x,y) - (a,b)\|} = 0.$$

In particular, if f is a function f(x,y) of two variables, it is differentiable at (a,b) its graph has a unique tangent plane at (a,b,f(a,b)).

Example 57. Determine if $f(x,y) = \begin{cases} 1 & xy = 0 \\ 0 & xy \neq 0 \end{cases}$ is differentiable at (0,0).