f: R2 -> 123

Example 53. How many rates of change should the function $f(s,t) = \begin{bmatrix} s^2 + t \\ 2s - t \\ st \end{bmatrix}$

have? Compute them.
$$f(s,t) = \langle \chi(s,t), y(s,t), z(s,t) \rangle$$

For First component

$$\frac{\partial \mathcal{L}}{\partial s} = \frac{\partial}{\partial s} \mathcal{R}(s,t) = \frac{\partial}{\partial c} \left(s^2 + t \right) = 2s$$

$$\frac{\partial x}{\partial t} = \frac{\partial}{\partial t} \left(S^2 + t \right) = 1$$

For y-component

$$\frac{\partial s}{\partial t} = \frac{\partial s}{\partial s} (2s - t) = 2$$

$$\frac{\partial t}{\partial y} = \frac{\partial t}{\partial t} (2s - t) = -1$$

 $\mathcal{X}(S,t) = S^2 + t$

 $\frac{\partial z}{\partial t} = \frac{1}{2}(st) = t$

So, we computed partial derivatives. How might we **organize** this information?

For any function $f: \mathbb{R}^n \to \mathbb{R}^m$ having the form $f(x_1, \dots, x_n) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_n, \dots, x_n) \end{bmatrix}$,

we have _____ inputs, ____ output, and ____ partial derivatives, which we can use to form the **total derivative**.

map from $\mathbb{R}^n \to \mathbb{R}^m$, denoted Df, and we can represent it with an ________ with one column per input and one row per output.

It has the formula $Df_{ij} = \begin{cases} \frac{1}{2} \\ \frac{1$

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$\mathbf{b})\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$$

c)
$$f(x,y) = \sqrt{5x - y}$$

$$d) f(x, y, z) = 2xyz - z^2y$$

e)
$$\mathbf{f}(s,t) = \langle s^2 + t, 2s - t, st \rangle$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$f: \mathbb{R} \to \mathbb{R}$$

Df has size $|x|$

b) $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^3 \to \mathbb{R}$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

In particular, the (total) derivative of **any** function $f : \mathbb{R}^n \to \mathbb{R}^m$, evaluated at $\mathbf{a} = (a_1, \dots, a_n)$, is the linear function that best approximates $f(\mathbf{x}) - f(\mathbf{a})$ at \mathbf{a} .

This leads to the familiar linear approximation formula for functions of one variable: $f(x) \not\approx f(a) + f'(a)(x-a) = 1$

Definition 55. The linearization or linear approximation of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ at the point $\mathbf{a} = (a_1, \dots, a_n)$ is

$$R^{\text{max}}$$
 $L(\mathbf{x}) = \mathbf{f}(\mathbf{a}) + \mathbf{D}\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$

f(1/10)= \(\frac{5}{5}(1)-1\) = \(\frac{5}{4}=2\)

Example 56. Find the linearization of the function $f(x,y) = \sqrt{5x - y}$ at the point (1,1). Use it to approximate f(1.1,1.1).

Step1:
$$Df = \left(\frac{5}{5\sqrt{5}x-4}\right)$$
 @ $a = (1,17)$
 $Df(1,1) = \left(\frac{5}{2\sqrt{5}x-4}\right)$ D $f(1,1) = \left(\frac{5}{2\sqrt{5}x-4}\right)$
 $L(x) = 2 + \left(\frac{5}{4}\right) \left(\frac{3}{4}\right) - \left(\frac{1}{1}\right)$
and
 $L(1,1,1,1) = 2 + \left(\frac{5}{4}\right) \left(\frac{1}{1}\right) - \left(\frac{1}{1}\right) = 2 + \left(\frac{5}{4}\right) \left(\frac{1}{1}\right)$

Question: What do you notice about the equation of the linearization?

$$= 2+(.125-.025)$$

We say $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** at **a** if its linearization is a good approximation of f near **a**.

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y) - L(x,y)}{\|(x,y) - (a,b)\|} = 0.$$

In particular, if f is a function f(x,y) of two variables, it is differentiable at (a,b) its graph has a unique tangent plane at (a,b,f(a,b)).

Example 57. Determine if $f(x,y) = \begin{cases} 1 & xy = 0 \\ 0 & xy \neq 0 \end{cases}$ is differentiable at (0,0).

$$Df = \begin{cases} 1 & \text{if } 1 & \text{if } 1 \\ \text{if } 2 & \text{if } 1 \\ \text{if } 3 & \text{if } 1 \\ \text{if } 3$$

Df = ?

$$f_{x} = f_{y} = f_{(0,0)}$$
?

Notice $f_{(0,0)} = 1$

@ x=0 $f_{(0,y)} = 1$

So $f_{y}(0_{y}) = 0$.

So
$$L(x) = f(0,0) + Df(0,0)(x-a)$$

= 1 + (0 07 [x] = 1.
but $f(x) = 0$ For some $x = 0$

§14.4 Page 50

§14.4 The Chain Rule

Recall the Chain Rule from single variable calculus:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) * g'(x)$$

Similarly, the **Chain Rule** for functions of multiple variables says that if $f : \mathbb{R}^p \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are both differentiable functions then

Scarity Chale $Df(g(\mathbf{x}))Dg(\mathbf{x})$.

Scarity Df is size hxp $\mathbb{R}^n \xrightarrow{g} \mathbb{R}^p \xrightarrow{f} \mathbb{R}^m$ Dg is size pxn $Df \not= Dg$ $Df \not= Dg$

Example 58. Suppose we are walking on our hill with height $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ along the curve $\mathbf{r}(t) = \langle t+1, 2-t^2 \rangle$ in the plane. How fast is our height changing at

time t = 1 if the positions are measured in meters and time is measured in minutes?

Dh(x=Dh) = Dh

Dh(1) = Dh | Dh(re) = Dh(re) + Dr(t)

Dh = (hx hy] = ($\frac{1}{2}$ x $\frac{1}{2}$ y] O(t=1 r(1)=(2,1))Dr = [$\frac{1}{2}$] = $\left(\frac{1}{2}$) O(t=1 r(1)=(2,1))

So $Dh(r(t))|_{t=1} = [-1 \frac{1}{2}][-2]$ $= [-1 \frac{1}{2}]$ $= [-1 \frac{1}{2}]$ $= [-1 \frac{1}{2}]$ $= [-1 \frac{1}{2}]$

Example 59. Suppose that $W(s,t) = F(\underline{u(s,t)},v(s,t))$, where F,u,v are differentiable functions and we know the following information.

$$u(1,0) = 2$$
 $v(1,0) = 3$
 $u_s(1,0) = -2$ $v_s(1,0) = 5$
 $u_t(1,0) = 6$ $v_t(1,0) = 4$
 $F_u(2,3) = -1$ $F_v(2,3) = 10$

loea:

DW=[Ws WE]

Find $W_s(1,0)$ and $W_t(1,0)$

$$D(f(g(\mathbf{x}))) = Df(g(\mathbf{x}))Dg(\mathbf{x}).$$
 Formula for such

Sanity whech

W: IR = R SO DW is

@(s,t)=(1,0) $Dg|_{(s,t)=(1,0)} = \begin{bmatrix} -2 & 6 \\ 5 & 4 \end{bmatrix}$

@(sit)=(1,0) so (u,v)=(2,3)

DF ((un)=(23) = [-1

DW = DF (g(sit)) x Dg(sit)

Full+Forts Full+Forte]

 $DW |_{(SH)=(1/6)} = (-1/6) \left[-2/6 \right]$

= [2+50 -6+40] WG(1,0)=52 $W_{+}(1,0) = 36$

Application to Implicit Differentiation: If F(x, y, z) = c is used to *implicitly* define z as a function of x and y, then the chain rule says:

Formula
$$\frac{\partial z}{\partial x} = \frac{-Fx}{Fz}$$

$$\frac{\partial z}{\partial y} = \frac{-Fy}{Fz}$$

Example 60. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the sphere $x^2 + y^2 + z^2 = 4$.

$$\frac{2F}{62} = 22$$

§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then f_x represents the rate of change of z in the x-direction and f_y represents the rate of change of z in the y-direction. What about other directions?

Let's go back to our hill example again, $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$. How could we figure out the rate of change of our height from the point (2,1) if we move in the

direction
$$\langle -1, 1 \rangle$$
?

$$Dh = \left(-\frac{1}{2}x - \frac{1}{2}y\right)$$

$$h(z, 1) = 4 - \frac{1}{4}(z)^2 - \frac{1}{4}(1)^2 = \frac{11}{4}$$

$$Dh |_{(z, 1)} = \left(-1 - \frac{1}{2}\right)$$

dea Donormalize a, mult = (-1/52, 1/2)

$$=\lim_{t\to\infty}\frac{1}{t}\left(\frac{t}{5z}-\frac{t^2}{8}-\frac{t}{25z}-\frac{t^2}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{1}{25z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}-\frac{t}{8}\right)=\lim_{t\to\infty}\left(\frac{1}{5z}-\frac{t}{8}\right)=\lim_{t\to\infty$$

$$D_{\mathbf{u}}f(\mathbf{p}) = \lim_{t \to 0} \frac{f(\mathbf{p} + t\mathbf{u}) - f(\mathbf{p})}{t}$$

if this limit exists.

E.g. for our hill example above we have:

$$D_{(2,1)} = \frac{1}{25}$$

Note that $D_{\mathbf{r}}f = \mathbf{r}$

$$D_{\mathbf{j}}f = \mathbf{f}$$

$$D_{\mathbf{k}}f = \mathbf{f}_{\mathbf{k}}$$

(The repular "Standard" directional desirutives)

Definition 63. If $f: \mathbb{R}^n \to \mathbb{R}$, then the **gradient** of f at $\mathbf{p} \in \mathbb{R}^n$ is the

Definition 63. If
$$f: \mathbb{R}^n \to \mathbb{R}$$
, then the **gradent** of f at $\mathbf{p} \in \mathbb{R}^n$ is the vector function $\mathbf{p} = \mathbf{p} = \mathbf{p}$

Note: If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point **p**, then f has a directional derivative at \mathbf{p} in the direction of any unit vector \mathbf{u} and

$$D_{\mathbf{u}}f(\mathbf{p}) = \bigvee \mathbf{j} \bullet \bigvee$$

$$\frac{EX}{2} \cdot \frac{1}{52.12} \cdot h(2.1) = \nabla h(2.1) \cdot e(-1.12) \cdot e(-1.12)$$

Example 64. You try it! Find the gradient vector and the directional derivative of each function at the given point **p** in the direction of the given vector **u**.

a)
$$f(x,y) = \ln(x^2 + y^2)$$
, $\mathbf{p} = (-1, 1)$, $\mathbf{u} = \left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$

b)
$$g(x,y,z)=x^2+4xy^2+z^2$$
, $\mathbf{p}=(1,2,1)$, \mathbf{u} the unit vector in the direction of $\mathbf{i}+2\mathbf{j}-\mathbf{k}$

Example 64. You try it! Find the gradient vector and the directional derivative of each function at the given point **p** in the direction of the given vector **u**.

a)
$$f(x,y) = \ln(x^2 + y^2)$$
, $\mathbf{p} = \langle -1, 1 \rangle$, $\mathbf{u} = \left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$

$$\nabla f = \begin{bmatrix} f_{11} \\ f_{11} \end{bmatrix} = \begin{bmatrix} 2x/(x^2+y^3) \\ 2y/(x^2+y^3) \end{bmatrix} \quad \mathbf{p} = \langle -1, 1 \rangle \quad \nabla f(\mathbf{p}) = \begin{bmatrix} -2/2 \\ 2/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

And
$$\mathbf{p} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix}$$

b) $g(x, y, z) = x^2 + 4xy^2 + z^2$, $\mathbf{p} = (1, 2, 1)$, \mathbf{u} the unit vector in the direction of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

$$\nabla g = \begin{bmatrix} f_{xy} \\ f_{yy} \end{bmatrix} = \begin{bmatrix} 2x + 4y^{2} \\ 8xy \\ 2z \end{bmatrix} \quad \emptyset \quad \beta = \langle 1, 2, 1 \rangle \quad \nabla g(\vec{p}) = \begin{bmatrix} 18 \\ 16 \\ 2 \end{bmatrix}$$

$$\nabla = \langle 1, 2, -1 \rangle \quad \Rightarrow \quad u = \frac{1}{||v||} \quad \nabla = \langle 1/||f_{0}||^{2}/||f_{0}||f_{0}||^{2}/||f_{0}||^{2}/||f$$

Page 57

Example 65. If $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, the contour map is given below. Find and draw ∇h on the diagram at the points (2,0), (0,4), and $(-\sqrt{2}, -\sqrt{2}).$ At the point (2,0), compute $D_{\mathbf{u}}h$ for the vectors $\mathbf{u}_1 = \mathbf{i}, \mathbf{u}_2 = \mathbf{j}, \mathbf{u}_3 = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle.$

Note that the gradient vector ∇f is PVV to the level curves of the function Z=fVV.

Similarly, for f(x,y,z), $\nabla f(a,b,c)$ is Orthogonal level Surfiely,

§14.5

Example 66. You try it! Sketch the curve $x^2 + y^2 = 4$ together with (a) the vector $\nabla f \mid_P$ and (b) the tangent line at $P(\sqrt{2}, \sqrt{2})$. Be sure to label the tangent line with the equation which defines it.

Page 58

Example 66. You try it! Sketch the curve $x^2 + y^2 = 4$ together with (a) the vector $\nabla f \mid_P$ and (b) the tangent line at $P(\sqrt{2}, \sqrt{2})$. Be sure to label the tangent line with the equation which defines it.

$$\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \otimes P(5z,5z) \quad \nabla f(\vec{p}) = \begin{bmatrix} 25z \\ 25z \end{bmatrix}$$

8+8=16 =42

$$I(t) = \langle J_2, J_2 \rangle + t \langle I, -1 \rangle$$

$$(So M = -1)$$

$$y = -\chi + b$$
 and passes than $(52, 52)$
So $\sqrt{2} = -\sqrt{2} + b$

Formula for Engert here

a(21-16) + (29-40) =0

Where $14(p) = \begin{bmatrix} 9\\ 5 \end{bmatrix}$

ChatGPT ~

:

what's the latex symbol \nabla

The LaTeX symbol \nabla renders as:

 ∇

It is called "nabla" or the del operator, and it is used primarily in vector calculus. It represents the vector differential operator:

$$abla = \left[rac{\partial}{\partial x_1}, rac{\partial}{\partial x_2}, \ldots, rac{\partial}{\partial x_n}
ight]$$

Common Uses:

Gradient of a scalar function f:

$$abla f = \left[rac{\partial f}{\partial x_1}, rac{\partial f}{\partial x_2}, \dots
ight]$$

• **Divergence** of a vector field \vec{F} :

$$abla \cdot \vec{F}$$

• Curl of a vector field \vec{F} :

$$abla imes ec{F}$$

• Laplacian of a scalar field f:

$$abla^2 f =
abla \cdot
abla f$$

So in summary, \nabla is a compact and powerful symbol in multivariable calculus, especially when working with fields and differential operators.

☆ Tools