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§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F'(z,y,z) = k. How can we find an equation

of the tangent plane of S at P(xg, yo, 20)7 _
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Example 67. Find the equation of the tangent plane at the poinPZ—Q, 1,—1) [to
the surface given by -Y-r
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Special case: if we have z = f(z,y)and a point (a, b, (@, b)), the equation of the

tangent plane is
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This should look familiar: it’s m e pned zesrion
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Example 68. You try it! Consider the surface in R? containing the point P and
defined by
2?4 2y — oy 4+ 22 =17, P(1,-1,3).

Identity the function F'(z,y, z) such that the surface is a level set of F'. Then, find
VF and an equation for the plane tangent to the surface at P. Finally, find a

parametric equation for the line normal to the surface at P.
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Example 68. You try it/ Consider the surface in R? containing the point P and
defined by

2?4 2zy — P+ 22 =7, P(1,-1,3).

Identity the function F'(z,y, z) such that the surface is a level set of F'. Then, find
VF and an equation for the plane tangent to the surface at @ inally, find a

parametric equation for the line normal to the surface at P.
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§14.7 Optimization: Local & Global

Gradient: If f(x,y) is a function of two variables, we said V f(a,b) points in the

direction of greatest change of f.
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Definition 68. Let f(x,y) be defined on a region containing the point (a,b). We

say

e f(a,b)isa ‘DCA]\ NM value of f if f(a,b) = f(z,y) for all

domain points (z,y) in a disk centered at (a,b)

e f(a,b)is a‘gﬁca} nm value of f if f(a,b) — f(x,y) for all

domain points (z,y) in a disk centered at (a, b)
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Definition 69. If f(z,y) is a function of two variables, a point (a, b) in the domain of
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Example 70. Find the critical points of the function

:13+y — dzy.
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Example 71. You try it/ Determine which of the functions below have a critical

point at (0,0) .

a) f(z,y) = 3z + y* + 2y

b)g(x,y) = cos(x) + sin(x)

¢) h(z,y) = m

d)k(z,y) = 2 + y*
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Example 71. You try it/ Determine which of the functions below have a critical

point at (0,0) .

a) f(z,y) :3x+y3+2y2 D:? = [3 3:jz+ thj]
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x,y) at (a,b) is

Hf(a,b) =

Theorem 72 (2nd Derivative Test). Suppose (a,b) is a critical point of f(x,y) and

f has continuous second partial derivatives. Then we have:
o Ifdet(H f(a,b)) >0 and fy.(a,b) >0, f(a,b) is a local minimum
o Ifdet(H f(a,b)) >0 and f,.(a,b) <0, f(a,b) is a local mazimum
o Ifdet(H f(a,b)) <0, f has a saddle point at (a,b)

o [fdet(H f(a,b)) =0, the test is inconclusive.

More generally, if f : R® — R has a critical point at p then

e If all eigenvalues of H f(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

o If all eigenvalues of H f(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

e If some eigenvalues of H f(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

e If all eigenvalues of H f(p) are positive or zero, f may have either a local
minimum or neither at p.

e If all eigenvalues of H f(p) are negative or zero, f may have either a local
maximum or neither at p.
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Example 73. Classify the critical points of f(x,y) = 2° + 3° — 3zy from Example
[70.
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Two Local Maxima, No Local Minimum: The function g(z,y) = —(2* —1)?
(z*y — x — 1)? + 2 has two critical points, at (—1,0) and (1,2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(z,y) is like a local maximum, except we must have f(a,b) >

f(z,y) for all (z,y) in the domain of f. A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x,y)

. . . 14.1 Functions of Several Variables 795
attains a global minimum € mazimum.

DEFINITIONS A point (x;, yp) in a region (set) R in the xy-plane is an interior
point of R if it is the center of a disk of positive radius that lies entirely in R
- (Figure 14.2). A point (x;, )p) is a boundary point of R if every disk centered at
Closed: (X, ¥p) contains points that lie outside of R as well as points that lie in R. (The
boundary point itself need not belong to R.)
The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary
points (Figure 14.3).
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Strategy for finding global min/max of f(z,y) on a closed & bounded

domain R

1. Find all critical points of f inside R.
2. Find all critical points of f on the boundary of R
3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum of f(z,y) = 42* — 4xy + 2y
on the closed region R bounded by y = 22 and y = 4.
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Example 76. Find the global minimum and maximum of f(x,y) = 42? — 4xy + 2y

on the closed region R bounded by y = 22 and y = 4.

(Cont.)
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