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§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F (x, y, z) = k. How can we find an equation

of the tangent plane of S at P (x0, y0, z0)?
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2 + y

2 + z = 10, P = (�1, 3, 0)

Ne XF(P) I
normal to the surface/
1 fausent Plane .

· a(x-xo)+bly-yo)+ C(z -zo) =0
Where = Carb, c).

! n= =(p)=
)P(2o

, 40 ,Zol

F = xz + y +z = 10 (k= 10)

TF = (2) and -1 , 310) = (4)1

Sotangent plane egu . is

-z(x - (-1) + b(y-3) +1(z - 0) = 0
= -z(x+ 1) + 6(y-2) + z = 0
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Example 67. Find the equation of the tangent plane at the point (�2, 1,�1) to

the surface given by

z = 4� x
2 � y

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the

tangent plane is

This should look familiar: it’s

PC
4
- 4 - /

↳f(x ,n) fl-z , 1) = - 1

①IdentifyF: F(x
, y ,z)= 4-v2 -y -z = 0 defines to

Surface.
② Find :

n = VF (P) OF:(E) OF= )
③Planeed: use alx-sol+ bly-yo) + c(z-z0)=0

get 4(x+2) - (y - 1) - (z + 1) =0

Texpand this
terma

if= (=") Of-2, 1) = ( _) Move z .

z = - 1 + 4(x +2) - (y - 1)

z = f(a ,b) + fu(a,b)(x -a) + fy(a,b)(y-b)

The linearization
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Example 68. You try it! Consider the surface in R3 containing the point P and

defined by

x
2 + 2xy � y

2 + z
2 = 7, P (1,�1, 3).

Identity the function F (x, y, z) such that the surface is a level set of F . Then, find

rF and an equation for the plane tangent to the surface at P . Finally, find a

parametric equation for the line normal to the surface at P .
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Example 68. You try it! Consider the surface in R3 containing the point P and

defined by

x
2 + 2xy � y

2 + z
2 = 7, P (1,�1, 3).

Identity the function F (x, y, z) such that the surface is a level set of F . Then, find

rF and an equation for the plane tangent to the surface at P . Finally, find a

parametric equation for the line normal to the surface at P .

④

Surface is level set

① F(x, y , z) =x+2xy -y+z =k ,
h=7

② UF = (2) e)F(==
2z

③ place en becomes O=4 (y + 1) + 6 (z -3) = 0

# want like passing turn PC1 , -113)

in the direction of n= <0 ,4,6)

Alt) = <1 , -1 ,3)+ + 50 , 4 ,D, teR

(from p ++u ++)
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§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said �f(a, b) points in the

direction of greatest change of f .

Back to the hill h(x, y) = 4h 1

4
x
2 h 1

4
y
2.

What should we expect to get if we compute �h(0, 0)? Why? What does the

tangent plane to z = h(x, y) at (0, 0, 4) look like?

Th=[i]Co0= (8)
① ②

-
① meaning of Th(0 ,0) =1/8)

is that(90) we are=
y

already at a local max
height value, so best

direction to increase

height is Don'tmore.②
2 = flaib) + fulab)(x -a) + fy(a,b)(y-b) (h(0,0) = (8
z = h(0,0) + ha (0,%)(x-0) + hy(0,%)(y -0)

= 4 + 0 to - z=4
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Definition 68. Let f(x, y) be defined on a region containing the point (a, b). We

say

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

In R3, another interesting thing can happen. Let’s look at z = x
2h y

2 (a hyperbolic

paraboloid!) near (0, 0).

This is called a

Notice that in all of these examples, we have a horizontal tangent plane at the point

in question, i.e.

Definition 69. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) = or where Df(a, b)

is called a of f .

local max &

local min

#

-#Graph ab
fal --

...
-nicen

m
I

ADomain

:is
-localmas-

- local min

Saddle point.

graph:

D
Slocal) flat)=Eig . x2+y2

MAX/MIN occurs of (ain)
&=if O either DA= 10 ofM ②Dflaib) is DNEE If= (8)

Co on is DNE(andefined)
critical points
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Example 70. Find the critical points of the function

f(x, y) = x
3 + y

3 h 3xy.

①Set =(b
*Solve for 2,% -

3y2-3x both worn?

Need both to be the,Sois (4)(1 , 1, 10,%]
① 3x2-3y =0

3y2- 3x=0
Sub ②
into

=> => Soy E y
=(yz)2
x=yz

=> Oy"y =0 x=y

Q

=> y(y3-1) =0
②
x=yz

①
So yeo or y =l

Andye

SoIf you fun x=0

If yel fren Rel

soD), 11 , 1) we all cust pds .
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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2
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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2

Df = [3 3y2+ 4y]

NO CRIT POINTS Since

DF +To OS For

any (n,u) El, So No

Dg = [-since coss] = 10 o)

if x=+, ke1.

but Df(0,0) # (0 O)
So No

Dh = [ii] is

B & (0 ,0

BUT (0,0) not in the
DOMAI Of h !! So NO

DR = [Ix 2y] and

Dk(0,0) = To O] so

yes
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x, y) at (a, b) is

Hf(a, b) =

Theorem 72 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and

f has continuous second partial derivatives. Then we have:

• If det(Hf(a, b)) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum

• If det(Hf(a, b)) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum

• If det(Hf(a, b)) < 0, f has a saddle point at (a, b)

• If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if f : Rn i R has a critical point at p then

• If all eigenvalues of Hf(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

• If all eigenvalues of Hf(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

• If some eigenvalues of Hf(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

• If all eigenvalues of Hf(p) are positive or zero, f may have either a local
minimum or neither at p.

• If all eigenvalues of Hf(p) are negative or zero, f may have either a local
maximum or neither at p.
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Example 73. Classify the critical points of f(x, y) = x
3 + y

3 h 3xy from Example

70.
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Two Local Maxima, No Local Minimum: The function g(x, y) = h(x2h 1)2h
(x2y h x h 1)2 + 2 has two critical points, at (h1, 0) and (1, 2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have f(a, b) !
f(x, y) for all (x, y) in the domain of f . A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x, y)

attains a global minimum & maximum.

Closed:

Bounded:

 
 

&

&

&
7

-
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Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum of f(x, y) = 4x2 h 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

Stepo :
ya

y= 4

42
I y = x2

in
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Example 76. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

(Cont.)

Ste3 : Erau
boundary endpoints(-2,4) X

(x, y) f(x,u) Y (2,4) y= 4

·&
point (E , 1)

I


