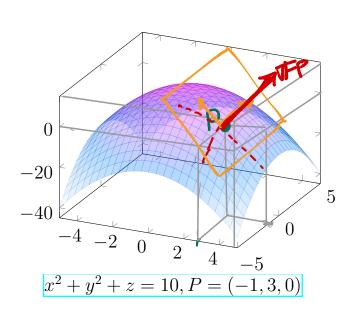
§14.6 Page 60

§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k. How can we find an equation of the tangent plane of S at $P(x_0, y_0, z_0)$?



Notice $\nabla F(P)$ is normal to the surface/ tansant Plane. $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ where $n=(a_1b_1c)$. $p(x_0,y_0,z_0)$

$$F = \chi^2 + \gamma^2 + \chi^2 = 10 \quad (k=10)$$

$$\nabla F = \begin{pmatrix} 2\chi \\ 2\gamma \\ 1 \end{pmatrix} \quad \text{and} \quad \nabla F(-1,3/0) = \begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix}$$

So tangent plane egn. is $-2(\chi-(-i))+6(y-3)+1(z-0)=0$ $\Rightarrow -2(\chi+i)+6(y-3)+2=0$

Example 67. Find the equation of the tangent plane at the poin (-2,1,-1) to

$$z = \underbrace{4 - x^2 - y}$$
 $f(x_1, y_1)$ $f(-2, 1) = -1$

$$N = \Delta E(b)$$

$$\Delta E = \begin{bmatrix} -5x \\ -1 \\ -1 \end{bmatrix}$$

$$\Delta E(b) = \begin{bmatrix} 4 \\ -1 \\ -1 \end{bmatrix}$$

get
$$4(\chi+2)-(y-1)-(\chi+1)=0$$

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the tangent plane is

$$Z = f(a,b) + f_{x}(a,b)(x-a) + f_{y}(a,b)(y-b)$$

This should look familiar: it's the linearization

§14.6 Page 62

Example 68. You try it! Consider the surface in \mathbb{R}^3 containing the point P and defined by

$$x^{2} + 2xy - y^{2} + z^{2} = 7$$
, $P(1, -1, 3)$.

Identity the function F(x, y, z) such that the surface is a level set of F. Then, find ∇F and an equation for the plane tangent to the surface at P. Finally, find a parametric equation for the line normal to the surface at P.

Example 68. You try it! Consider the surface in \mathbb{R}^3 containing the point P and defined by

$$x^{2} + 2xy - y^{2} + z^{2} = 7$$
, $P(1, -1, 3)$.

Identity the function F(x, y, z) such that the surface is a level set of F. Then, find ∇F and an equation for the plane tangent to the surface at F inally, find a parametric equation for the line normal to the surface at F.

3 plane egn be comes
$$O(x-1)+4(y+1)+6(z-3)=0$$

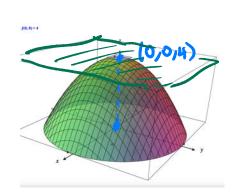
Want the passing thru
$$P(1,-1.3)$$

in the direction of $N=(0,4.6)$

§14.7 Optimization: Local & Global

Gradient: If f(x,y) is a function of two variables, we said $\nabla f(a,b)$ points in the direction of greatest change of f.

What should we expect to get if we compute $\nabla h(0,0)$? Why: What does the tangent plane to z = h(x,y) at (0,0,4) look like?



meanity of $\nabla h(0,0)=(8)$ is that @ (0,0) we are already at a local max height value, so best director to morease height in the sont move.

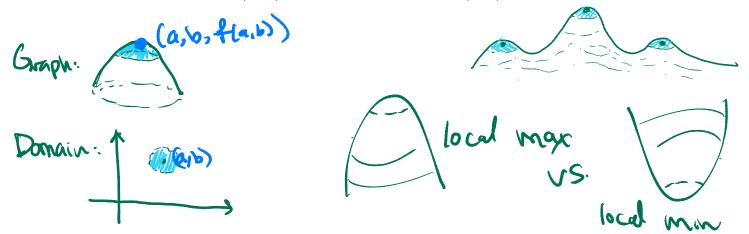
$$Z = f(a,b) + f_{x}(a,b)(x-a) + f_{y}(a,b)(y-b) \qquad \forall h_{y}(0,0) = {3}$$

$$Z = h(0,0) + h_{x}(0,0)(x-0) + h_{y}(0,0)(y-0)$$

$$= 4 + 0 + 0 \qquad \Rightarrow Z = 4$$

Definition 68. Let f(x,y) be defined on a region containing the point (a,b). We say

- f(a,b) is a local local value of f if $f(a,b) \ge f(x,y)$ for all domain points (x,y) in a disk centered at (a,b)
- f(a,b) is a ______ value of f if f(a,b) ______ f(x,y) for all domain points (x,y) in a disk centered at (a,b)



In \mathbb{R}^3 , another interesting thing can happen. Let's look at $z = x^2 - y^2$ (a hyperbolic paraboloid!) near (0,0).

This is called a Sable point.

Notice that in all of these examples, we have a horizontal tangent plane at the point

(localin question, i.e.

MAX/MIN occurs @ (aix)

or $f(x,y) = \sqrt{x^2 + y^2}$

 Example 70. Find the critical points of the function

Deat
$$f(x,y) = x^3 + y^3 - 3xy$$
. The first the critical points of the function $f(x,y) = x^3 + y^3 - 3xy$. The first $f(x,y) = x^3 + y^3 + y^3 - 3xy$. The first $f(x,y) = x^3 + y^3 + y^3 - 3xy$. The first $f(x,y) = x^3 + y^3 + y^3 - 3xy$ and $f(x,y) = x^3 + y^3 + y^3 + y^3 + y^3 + y^3 + y^3 + y^3$

Example 71. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x,y) = 3x + y^3 + 2y^2$$

$$b)g(x,y) = \cos(x) + \sin(x)$$

c)
$$h(x,y) = \frac{4}{x^2 + y^2}$$

$$d)k(x,y) = x^2 + y^2$$

Example 71. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x,y) = 3x + y^3 + 2y^2$$
 Df = [3 3y²+4y]

No CRIT POINTS Since

Df # [0 0] For

any (x,4) GR², So No

b)
$$g(x,y) = \cos(x) + \sin(x)$$
 by $g = \begin{bmatrix} -\sin n & \cos x \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$

If $x = \frac{\pi}{4} + k \frac{\pi}{2}$, ke Z.

but $D \neq \{0,0\} \neq \{0 & 0\}$

So $N \neq 0$

c) $h(x,y) = \frac{4}{r^2 + n^2}$

d) $k(x, y) = x^2 + y^2$

$$Dh = \begin{bmatrix} -8 \times & -89 \\ (x^2+y^2)^2 & (x^2+y^2)^2 \end{bmatrix}$$
 is
$$DNE @ (0,0)$$

$$DNE @ (0,0)$$

$$DOMAIN OF h!! So NO$$

$$Dk = [2n 2y] \text{ and}$$

$$Dk(0,0) = [0 0] \text{ so}$$

$$yes$$

To classify critical points, we turn to the **second derivative test** and the **Hessian** matrix. The **Hessian matrix** of f(x,y) at (a,b) is

$$Hf(a,b) =$$

Theorem 72 (2nd Derivative Test). Suppose (a,b) is a critical point of f(x,y) and f has continuous second partial derivatives. Then we have:

- If det(Hf(a,b)) > 0 and $f_{xx}(a,b) > 0$, f(a,b) is a local minimum
- If det(Hf(a,b)) > 0 and $f_{xx}(a,b) < 0$, f(a,b) is a local maximum
- If det(Hf(a,b)) < 0, f has a saddle point at (a,b)
- If det(H f(a, b)) = 0, the test is inconclusive.

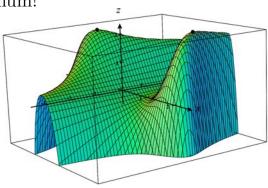
More generally, if $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at **p** then

- If all eigenvalues of $Hf(\mathbf{p})$ are positive, f is concave up in every direction from \mathbf{p} and so has a local minimum at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are negative, f is concave down in every direction from \mathbf{p} and so has a local maximum at \mathbf{p} .
- If some eigenvalues of $Hf(\mathbf{p})$ are positive and some are negative, f is concave up in some directions from \mathbf{p} and concave down in others, so has neither a local minimum or maximum at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are positive or zero, f may have either a local minimum or neither at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are negative or zero, f may have either a local maximum or neither at \mathbf{p} .

Example 73. Classify the critical points of $f(x,y) = x^3 + y^3 - 3xy$ from Example 70.

Two Local Maxima, No Local Minimum: The function $g(x,y) = -(x^2-1)^2 - (x^2-1)^2 - (x^2-$

 $(x^2y - x - 1)^2 + 2$ has two critical points, at (-1,0) and (1,2). Both are local maxima, and the function never has a local minimum!



A global maximum of f(x, y) is like a local maximum, except we must have $f(a, b) \ge f(x, y)$ for all (x, y) in the domain of f. A global minimum is defined similarly.

Theorem 74. On a closed \mathcal{E} bounded domain, any continuous function f(x,y) attains a global minimum \mathcal{E} maximum.

795

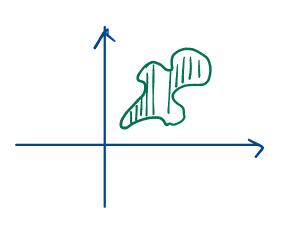
Closed:

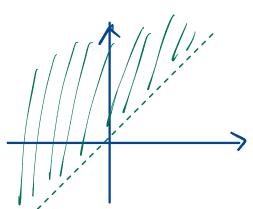
Bounded:

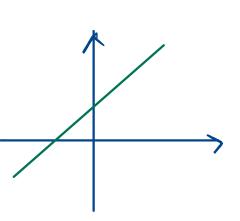
DEFINITIONS A point (x_0, y_0) in a region (set) R in the xy-plane is an **interior point** of R if it is the center of a disk of positive radius that lies entirely in R (Figure 14.2). A point (x_0, y_0) is a **boundary point** of R if every disk centered at (x_0, y_0) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the **interior** of the region. The region's boundary points make up its **boundary**. A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points (Figure 14.3).

DEFINITIONS A region in the plane is **bounded** if it lies inside a disk of finite radius. A region is **unbounded** if it is not bounded.



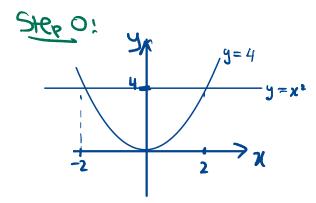




Strategy for finding global min/max of f(x,y) on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 75. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4.



Example 76. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4. (Cont.)

