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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2
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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2

Df = [3 3y2+ 4y]

NO CRIT POINTS Since

DF +To OS For

any (n,u) El, So No

Dg = -since + coss of = 100)
of hlai) isscator -
x=+, kt1 .

DhT= Th emSo but DA (0,0) (0 O]
tanx= 1

So No
x=/4fut,bet.

(a) crit point of Dh = [ii] is

h(rin) if
>⑧ Caiss in domain of hand B & (0 ,0

either BUT (0,0) not in the
28 Uklab)= : or DOMAI Of h !! So NO
& Oh(a . b) is DNE .

DR = [Ix 2y] and

Dk(0,0) = To O] so

yes
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x, y) at (a, b) is

Hf(a, b) =

Theorem 72 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and

f has continuous second partial derivatives. Then we have:

• If det(Hf(a, b)) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum

• If det(Hf(a, b)) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum

• If det(Hf(a, b)) < 0, f has a saddle point at (a, b)

• If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if f : Rn � R has a critical point at p then

• If all eigenvalues of Hf(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

• If all eigenvalues of Hf(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

• If some eigenvalues of Hf(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

• If all eigenvalues of Hf(p) are positive or zero, f may have either a local
minimum or neither at p.

• If all eigenvalues of Hf(p) are negative or zero, f may have either a local
maximum or neither at p.

I
Sim to 2nd deviative test in Calc I .

A "so U min freulain) fay(a ,b)
f"co maxI (ya(ab) fyy (a,b)] Symmec
CalcI . fry=fix

rit
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Example 73. Classify the critical points of f(x, y) = x
3 + y

3 h 3xy from Example

70. Solve

Stepl
. compute critpts. Vf =G
-
-

Sept classify use HA = (fun A )
Sof = 1) =1=

=>10,0) i, (1 , 1) only crit
pots

(from previous slide (57).

③

St : First computeOfau =Ay , fyt

fun= Ex fay =-3 so Hf =(i)fys = -3 fyy= by
det Htflo,0)= - 9/0& (0 ,0) H(0,0)=[] ,
so saddle +(0,0)

& (1, 1) Hf(, 1) = (b) ,det H =27 >O & fax(1, 1)=:
So MIN& (1, 1)
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Two Local Maxima, No Local Minimum: The function g(x, y) = h(x2h 1)2h
(x2y h x h 1)2 + 2 has two critical points, at (h1, 0) and (1, 2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have f(a, b) i
f(x, y) for all (x, y) in the domain of f . A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x, y)

attains a global minimum & maximum.

Closed:

Bounded:

 
 

* *
*

*

(boundary)
contains all bary

exterit points .

&

I /III Ki,
closed noused notused.

contained in Some lase enough ball

bounded . UNBOUNDED
&

⑭u+
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Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum of f(x, y) = 4x2 h 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

Draw R -

Stepo :
yaSep1: Find crit pts inside R y = x2

-Of=l= -7 = 15)
TSolve . (OH FroSMut

so y= /
So crit pt of f is

Ca
,
1) .

Se investigate the 1-dim't boundary pieces.

Cy=x2 f(x,2) = 4 - 4xx +2x2 =
- 4x3 +6x

&e f= 0 For d
,
2+ (2 ,2) fle)= -12x2+ 12x=0

=> x) - x+1) =0

=> 2=8 or delIf 2 =0 then Yes = o So get

(0 ,)
If X=1 then you'l so get (1 ,1)
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Example 76. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

(Cont.)

& y = 4 f(x,4) = 4x" - 162 + 8 Set f =0 & solve
For xz(-2

,2) .

fl)= 82-16 =>2 (ignore since on bdoy)Of(2
,
2)

S3 : investigate Ordin't bary pts (interset
Get the intersection pts . by setty

4=x2y= 4 and yeph equal
=>x= 12

=> (2,4), (2, 4)

Ste : Evaluate: all points
endpointsboundary
(2,4) y= 4inter (2, 4) flay) = 42-cy+in tit

Y ↓

↓ (E , 1) I ego ,)
o

interior crt
(1 , 1) Z

endig ( ,D -8 MIN & (2 ,4)

(-2 ,4)56 MAX & (2 ,4)
I
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§14.8 Constrained Optimization, Lagrange
Multipliers

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a constraint, g(x, y) = c.

Example 77. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

Objective function:

Constraint equation:

I : DVf = JogQg = k.

h(x ,4)= 4-y-yy2 (funeM ↑
(2 , 1)

*
(0,3)

on(+
)

g(x,4) = y + 0 .5x2 = 3 (conditionsthat must be)Satisfied
(n=3)

⑪ set up the Lagrange equations Uh= /OgE
on= Cha=O=]

②
g
= k

So L-Gegus are ↓ From

E Ex-xx
= 0

=
② Y+Ex=3 y - Ex2= 3 y

- Ext = 3

: If 20 then 40s so yes
and get,(35

y to=3 Y

-Ex= -Ex So y=/ get (2 , i)Ca2: If d=: then 4 -Ey=T ItEx"=3 12- 2,)
.

/
T

y+Ext3 => pe= 4 ,=z
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Example 77. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

(Cont.) S (1,u) either (0,3), (2, 1), or72,17
For the Lagrange equs to all be

Satisfied

⑧

i ·(2 , in &

· (013)

(u) U( ,u) = 4-tr2-Gy2
(2 , 1) hiz, 1= 4-1- = 2 .75 MAX

(-z , 17 h)-2,1) = 4
- 1 - 7 = 2 075 MAY

10,3) h(0,3) = 4-0-g = 1 .75 Min ??
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Method of Lagrange Multipliers: To find the maximum and minimum values

attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points

where �f(x, y, z) = ��g(x, y, z) and g(x, y, z) = c and compute the value of f at

these points.

If we have more than one constraint g(x, y, z) = c1, h(x, y, z) = c2, then find all points

where �f(x, y, z) = ��g(x, y, z) + µ�h(x, y, z) and g(x, y, z) = c1, h(x, y, z) = c2.

Example 78. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.

-

to
8 dlayiz)=y+z I "distance from(2,< ,2) toRejectivefunctionto f (2 ,4 ,z)= 22+y2+z2 Co

,0,8) .
"

Constraint !
- g(x, y,z)

= z2- My = 4 IDEA FROM CALL 1

(k=4) minimize instead

Lagrange Caus. d2 = f(x,y ,z) = x2+y + z
no square root, easier%f = 109 of 1)g ( w/ same answer (

② g=k
From Iz-JIz =0 = 2z)1 -d)=0

eith zo or d = 1 .solve See--by =
u=-

②z2- xy = 4
zy=

- >x =

Case z=0 (cont]
-y= 4 - (24) y = 4

-
If zo and you then getN G Zy = 12
If Zio and d=2 then GIVE- Sir

=> Zy-Ey =0

If Zo and d= -2 four -x4 = 4 H H => y(z -y=0

E
=24

=> SaXi => H=12 , Y :52 either Y=0 or
2422 at2+2,0 , (-2 , 2 ,0

x=12
-

x4= 4
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Example 78. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.

(Cont.)
Last case J= 1.

Case d = 1 Then solve Ex= dY becomes 2x= y
= zy = Sx 2y= x& Iz= x2d S zz=zz

z2 -Hy =4 z2-xy=4 .

Plug in Y=2x into Zy=s get 2(zx)=n => 4x=2

=> x= 0

So y= z(0)
=0

constraint becomes z2-0= H = z=12

get (0 ,0,2) and 10
,
0
, -2)

( , % ,2) friz)= 22+y2+z2

(2 ,
-2
,074+ 4 + 0 =8 max distancere

(-2 ,2 , 0) S

(0,0,2) 4 -
Mir disance M = z10

,
0
,-2)4 T
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Example 79. You try it! Find the points on the curve x
2 + xy + y

2 = 1 in the

xy-plane that are nearest to and farthest from the origin.



§14.8 Page 78

Example 79. You try it! Find the points on the curve x
2 + xy + y

2 = 1 in the

xy-plane that are nearest to and farthest from the origin.

Set up : Vf = 15g ↓ I
,) =+y but do instead flug) = 22+y2

Of = [] and Ogzn]
g(u,a) = n = +xy+y

So Lagrange equations
to solve are

&1 : If x= 0 then By= 1 = Y= 11 .

① 2x= J(2x+y)
②
zy = J(zy +x)

get 10, 1) & 10
,
-1)

.

③
x+ my +y

= = /

Ca2 : 15 y=0 Then Op= 1 - R= 11
get (1 ,0 ,

11
,
0 ·

cases : 250 and yo · Then D & G become Jin-

=> [x(zy +z) = zylize+y) ( ,4) fix ,u]
=>Guy + 2x2 = 42y + 2y2 10, 1) 1

= x2 yz
10,-13 I

(b) (-1 , 0) I

>x = y or n= - y. (1 ,0) I

( %5.%23In case you then

③
x2 +x2+ x2 = 1

In case y= -z then (11-1) 2

=>= 13
③ x2 - x2 +x2 = /

(- , 1) 2

=> x2= 1
=> n=is So MIN value E

=) n = 11
& (1 ,-1), (1 , 13

get (Yz
,Yis) , 73,/3) get (11-1) and (1 , 1) MAX value fl

C live , =%3)


