Example 71. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x,y) = 3x + y^3 + 2y^2$$

$$b)g(x,y) = \cos(x) + \sin(x)$$

c)
$$h(x,y) = \frac{4}{x^2 + y^2}$$

$$d)k(x,y) = x^2 + y^2$$

Example 71. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x,y) = 3x + y^3 + 2y^2$$

$$Df = \begin{bmatrix} 3 & 3y^2 + 4y \end{bmatrix}$$
NO CRIT POINTS SINCE
$$Df \neq [0 \text{ o] For}$$
any $(x,4) \in \mathbb{R}^2$, so No

$$b)g(x,y) = \cos(x) + \sin(x)$$

Then is scater.

c)
$$h(x,y) = \frac{4}{x^2 + y^2}$$

(a,v) cut point of h(n,4) if

@ Caiss in donair of h

$$\nabla h$$
 (a,b) is DUE $\mathrm{d})k(x,y)=x^2+y^2$

$$Dg = \begin{bmatrix} -\sin n + \cos x & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

g $\chi = \frac{\pi}{4} + k \frac{\pi}{2}$, $k \in \mathbb{Z}$.

50 2 but Df(0,0) + [0 0] tourn=1 50 NO

x=Thyten, bez.

$$Dh = \left[\frac{-8 \times (x^2 + y^2)^2}{(x^2 + y^2)^2} \right] = \frac{-8y}{(x^2 + y^2)^2}$$
 is
DNE @ (0,0)

BUT (0,0) not in the DOMAIN OF h!! So NO

$$Dk = [2\pi 2y]$$
 and $Dk(0,0) = [0 0]$ so yes

Calc I.

Sim to 2nd derivative text in

To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x,y) at (a,b) is

$$Hf(a,b) = \begin{cases} f_{xx}(a_{xy}) & f_{xy}(a_{xy}) \\ f_{yx}(a_{yy}(a_{yy})) & f_{yy}(a_{yy}(a_{yy})) \end{cases}$$

Theorem 72 (2nd Derivative Test). Suppose (a,b) is a critical point of f(x,y)has continuous second partial derivatives. Then we have:

- If det(Hf(a,b)) > 0 and $f_{xx}(a,b) > 0$, f(a,b) is a local minimum
 - If det(Hf(a,b)) > 0 and f_{xx}(a,b) < 0, f(a,b) is a local maximum
 If det(Hf(a,b)) < 0, f has a saddle point at (a,b)
 If det(Hf(a,b)) = 0, the test is inconclusive.

More generally, if $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at **p** then

- If all eigenvalues of $Hf(\mathbf{p})$ are positive, f is concave up in every direction from **p** and so has a local minimum at **p**.
- If all eigenvalues of $Hf(\mathbf{p})$ are negative, f is concave down in every direction from \mathbf{p} and so has a local maximum at \mathbf{p} .
- If some eigenvalues of $Hf(\mathbf{p})$ are positive and some are negative, f is concave up in some directions from **p** and concave down in others, so has neither a local minimum or maximum at **p**.
- If all eigenvalues of $Hf(\mathbf{p})$ are positive or zero, f may have either a local minimum or neither at **p**.
- If all eigenvalues of $Hf(\mathbf{p})$ are negative or zero, f may have either a local maximum or neither at **p**.

Example 73. Classify the critical points of $f(x,y) = x^3 + y^3 - 3xy$ from Example

Step1. compute Cr4 ptr. $\nabla f = \delta$

Stepz classify use Hf = (frex frey).

Step!: $\nabla f = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 3x^2 - 3y \\ 3y^2 - 3u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(5,0) à (1,1) only vir pts (From previous slide LJT).

Step 2: First compute fun, fry = fyn. fyy

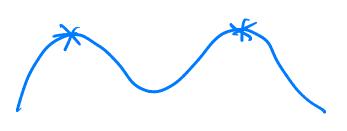
from=60x fry=-3fyx=-3 fyy=-3So Hf = (6x - 3)(-3 64)

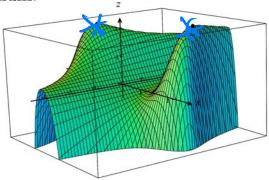
@ (0,0) Hf (0,0) = [0,-37], det Hf(0,0) = -9<0 So Soddle @ (0,0)

(C(1,1) Hf(1,1) = [6-3] Let Hf=2770 & fox(1,1)=620 SHING(1,1)

Two Local Maxima, No Local Minimum: The function $g(x,y) = -(x^2-1)^2 -$

 $(x^2y-x-1)^2+2$ has two critical points, at (-1,0) and (1,2). Both are local maxima, and the function never has a local minimum!





A global maximum of f(x,y) is like a local maximum, except we must have $f(a,b) \ge$ f(x,y) for all (x,y) in the domain of f. A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x,y)14.1 Functions of Several Variables attains a global minimum & maximum.

Closed:

DEFINITIONS A point (x_0, y_0) in a region (set) R in the xy-plane is an **interior point** of R if it is the center of a disk of positive radius that lies entirely in R (Figure 14.2). A point (x_0, y_0) is a **boundary point** of R if every disk centered at (x_0, y_0) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. The region's boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary points (Figure 14.3).

Bounded:

DEFINITIONS A region in the plane is **bounded** if it lies inside a disk of finite radius. A region is unbounded if it is not bounded.

MBOUNDED bounded MBOUNDED

795

Strategy for finding global min/max of f(x,y) on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 75. Find the global minimum and maximum of $f(x,y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4. 1: Find ort ptr cusine l $\forall \nabla f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 8x - 4y \\ -4x + 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Solve. (&-44=0 0 From @ 76=1/2)-4212=00 plugue 0 4-44=0 Cot pt of & IS (1/2,1). Step 2 invertigate the 1-dim't boundary preces. $0.9=x^2+(x,x^2)=4x^2-4x\cdot x^2+2x^2=-4x^3+6x^2$ Solve f'=0 for x, xx(-7,2) f'(x)=-12x2+12x=0 ⇒ x(-x+1)=0 14 7 = 0 Then y= x2 = 0 So get

Example 76. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4. (Cont.)

@
$$y=4$$
 $f(x,4)=4x^2-16x+8$ Set $f'=0$ d solve for $x\in(-2,2)$.

 $f'(x)=8x-16$ \Rightarrow $x=2$ (ignore Source on large of $(-2,2)$)

Step 3: investigate O-dim't ladry par (intersection party)

Get the intersection pass by Setting

 $y=4$ and $y=x^2$ equal \Rightarrow $4=x^2$
 \Rightarrow $x=\pm 2$
 \Rightarrow $(z,4),(-z,4)$

Step 3: Evaluate. all points.

Step 3: Evaluate. all points. (x,y) $f(x,y) = 4x^2 - 4xy + 2y$ (x,y) $f(x,y) = 4x^2 - 4xy + 2y$ (x,y) f(x,y) f(x

§14.8 Constrained Optimization, Lagrange Multipliers

Goal: Maximize or minimize f(x,y) or f(x,y,z) subject to a constraint, g(x,y)=c.

Example 77. A new hiking trail has been constructed on the hill with height $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, above the points $y = -0.5x^2 + 3$ in the xy-plane. What is the highest point on the hill on this path?

Constraint equation:

$$g(x,4) = y + 0.5x^2 = 3$$

Objective function: $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ | Function you want to maximize

 $g(x,y) = y + 0.5x^2 = 3$ (conditionathat must be Souths Field

Page 72

The $\begin{bmatrix} hx \\ hy \end{bmatrix} = \begin{bmatrix} -1/2x \\ -1/2y \end{bmatrix}$ $7g = \begin{bmatrix} 9x \\ 9y \end{bmatrix} = \begin{bmatrix} x \\ 1 \end{bmatrix}$ From 0

$$\nabla h = \begin{bmatrix} hx \\ hy \end{bmatrix} = \begin{bmatrix} -1/2x \\ -1/2y \end{bmatrix}$$

$$\sqrt{g} = \left[\frac{gx}{gy} \right] = \left(\frac{x}{1} \right)$$

The
$$\begin{bmatrix} hx \\ hy \end{bmatrix} = \begin{bmatrix} -1/2x \\ -1/2y \end{bmatrix}$$
 $7g = \begin{bmatrix} 9x \\ 9y \end{bmatrix} = \begin{bmatrix} x \\ 1 \end{bmatrix}$ From 0

So L-6 eqns ore

$$0 = \begin{bmatrix} -1/2x \\ -1/2y \end{bmatrix}$$

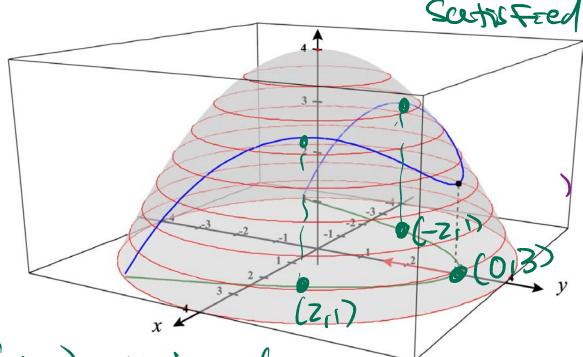
$$0 = \begin{bmatrix} -1/2x \\ -1/2x \end{bmatrix}$$

$$0 =$$

§14.8 Page 73

Example 77. A new hiking trail has been constructed on the hill with height $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, above the points $y = -0.5x^2 + 3$ in the xy-plane. What is the highest point on the hill on this path?

(Cont.) So (21,4) either (0,3), (2,1), or (-2,1) The Lagrange eggs to all be



$$(z,1)$$
 $h(z,1) = 4 - 1 - \frac{1}{4} = 2.75 MAX$

$$(z,1)$$
 $h(z,1) = 4 - 1 - \frac{1}{4} = 2.75$ MAX
 $(-z,1)$ $h(-z,1) = 4 - 1 - \frac{1}{4} = 2.75$ MAX
 $(0,3)$ $h(0,3) = 4 - 0 - 9 = 1.75$ MIN??

Method of Lagrange Multipliers: To find the maximum and minimum values attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points where $\nabla f(x,y,z) = \lambda \nabla g(x,y,z)$ and g(x,y,z) = c and compute the value of f at these points.

If we have more than one constraint $g(x, y, z) = c_1$, $h(x, y, z) = c_2$, then find all points where $\nabla f(x,y,z) = \lambda \nabla g(x,y,z) + \mu \nabla h(x,y,z)$ and $g(x,y,z) = c_1, h(x,y,z) = c_2$.

Example 78. Find the points on the surface $z^2 = xy + 4$ that are closest to the

origin. Objective function: a(xy,2)= 122+42+22 +(21412)=202+42+22 (6,0,0) !! $q(x_1, y_1, z) = z^2 - xy = 4$ $\nabla f = \begin{pmatrix} 2x \\ 2y \\ 72 \end{pmatrix} \quad \nabla g = \begin{pmatrix} -y \\ -x \end{pmatrix} \quad \begin{pmatrix} -y \\ -x \end{pmatrix}$ ZZ - 12Z =0 ⇒ ZZ(1-1/)=0 eau ==0 or d=1. Case 2=0 (cont) 7=0 and y=0 trun get (0,0,0). and d=-2 Then

Example 78. Find the points on one origin.

(Cont.) Last case d=1.

(Cont.)

Case d=1 then solve $\begin{cases} 2x=4y \\ 2y=6x \\ 2z=4z \end{cases}$ becomes $\begin{cases} 2x=y \\ 2y=x \\ 2z=2z \end{cases}$ $\begin{cases} 2x=y \\ 2y=x \\ 2z=2z \end{cases}$

$$\begin{cases} 2x = \lambda y \\ 2y = \delta x \\ 2z = \lambda 2\lambda \\ z^2 - xy = \lambda 2 \end{cases}$$

Plug in y=221 (Noto Zy=22 get 2(2x)=21 => 4x=21

Constraint because $2^{2}-0=4 \Rightarrow 2=52$ get (0,0,2) and (0,0,-2)

 $\begin{array}{c|c} (\mathcal{X}, 4, 2) & f(x_1, 2) = \chi^2 + \chi^2 + 2^2 \\ (2, -2, 0) & 4 + 4 + 0 = 8 \\ (-2, 2, 0) & 8 & E \end{array}$

(0/0/2) 4 (5-,0,0)

Max distince Tg

MIN distance 14 = Z

§14.8 Page 78

Example 79. You try it! Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest to and farthest from the origin.

Example 79. You try it! Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest to and farthest from the origin.

Set up:
$$\nabla f = \lambda \nabla g$$
 d(x,y) = $\int x^2 + y^2$ but do instead $f(u,y) = x^2 + y^2$
 $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$ and $\nabla g = \begin{bmatrix} 2x + y \\ 2y + x \end{bmatrix}$ So Lagrange equations

Case 1: If
$$x=0$$
 then $y^2=1 \Rightarrow y=\pm 1$.

Que 1: If $x=0$ then $y^2=1 \Rightarrow y=\pm 1$.

Que 1: If $x=0$ then $y^2=1$
 $y=\pm 1$
 $y=\pm 1$
 $y=\pm 1$
 $y=\pm 1$
 $y=\pm 1$
 $y=\pm 1$
 $y=\pm 1$

Case 3:
$$\chi \neq 0$$
 and $\chi \neq 0$. Then () (1) become $\chi = \frac{2\chi}{2\chi + \chi} = \frac{2\chi}{2\chi + \chi}$

$$\Rightarrow$$
 $4xy + 2x^2 = 4xy + 2y^2$

$$\Rightarrow \chi^2 = y^2$$

In case y=x then

$$3 \quad \chi^2 + \chi^2 + \chi^2 = 1$$

$$\Rightarrow \chi^2 = 1/3$$

$$\exists \chi^2 - \chi^2 + \chi^2 = 1$$

$$\Rightarrow \chi^2 = 1$$

$$= 2 \times 2 = 1$$

get $(1,-1)$ and $(-1,1)$

$$\frac{(x,4)}{(0,1)} = \frac{1}{(0,1)}$$

$$\frac{(0,1)}{(0,-1)} = \frac{1}{(0,-1)} = \frac{1}{(0,0)} = \frac$$

So MIN value JZ

@ (1,-1) & (-1,1)

MAX value (2/3)

@ (±1/53,±1/53)