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Example 71. You try it/ Determine which of the functions below have a critical

point at (0,0) .

a) f(z,y) = 3z + y* + 2y

b)g(x,y) = cos(x) + sin(x)

¢) h(z,y) = m

d)k(z,y) = 2 + y*
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Example 71. You try it/ Determine which of the functions below have a critical

point at (0,0) .
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u To classify critical points we turn to the second derivative test and the Hessian

n matrix of f(z,y) at (a,b) is

'>0 U A Dexla> Jg'x (ab)
YAYS AT TN Hite,t) = (TFE \
\f{ 37(,( a /‘D) 4@33 C“/ b) ’exgcg

a\cXT .
Theorem 72 (2nd Derivative Test). Suppose (a,b) is a critical point of f(x,y) and

f has continuous second partial derivatives. Then we have:

(D Stk If det(H f(a,b)) > 0 and f.(a,b) >0, f(a,b) is a local minimum
£1

If det(H f(a,b)) > 0 and f.z(a,b) <0, f(a,b) is a local maximum

If det(H f(a,b)) <0, f has a saddle point at (a,b)

If det(H f(a,b)) = 0, the test is inconclusive.

More generally, if f : R® — R has a critical point at p then

e If all eigenvalues of H f(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

o If all eigenvalues of H f(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

e If some eigenvalues of H f(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

e If all eigenvalues of H f(p) are positive or zero, f may have either a local
minimum or neither at p.

e If all eigenvalues of H f(p) are negative or zero, f may have either a local
maximum or neither at p.
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Example 73. Classify the critical points of f(x,y) = 23 + y* — 3zy from Example
[70. Svs
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Two Local Maxima, No Local Minimum: The function g(z,y) = —(2* —1)?
(z*y — x — 1)? + 2 has two critical points, at (—1,0) and (1,2). Both are local

maxima, and the function never has a local minimum!

Alglobal maximum of f(z,y) is like a local maximum, except we must have f(a,b) >

f(z,y) for all (z,y) in the domain of f. A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x,y)

. . . 14.1 Functions of Several Variables 795
attains a global minimum € mazimum.

WM\DEFINITIONS A point (xy, yp) in a region (set) R in the xy-plane is an interior

point of R if it is the center of a disk of positive radius that lies entirely in R
(Figure 14.2). A point (x;, )p) is a boundary point of R if every disk centered at
(X, ¥p) contains points that lie outside of R as well as points that lie in R. (The
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary
points (Figure 14.3).

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite
radius. A region is unbounded if it is not bounded.
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Strategy for finding global min/max of f(z,y) on a closed & bounded

domain R

1. Find all critical points of f inside R.
2. Find all critical points of f on the boundary of R
3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum df f(x,y) = 42> — 4y + 2y
on the closed region R bounded by y = 22 and y = 4. D K

Sepl: Vo ord pr e e Oy

o[£} (501 gl

J
N
Sows - & -ty=0 0 S 2= o
- @ lwvae © 2 2 X
Ynsz <0 P9 4-Yy=o ‘
ol a0 e o ok £
L"z,b-/

g}_ ]\(\w.\,),_,({ “fia ’(—é,\w\'z( M) precel.

@ Y4=" P2, 0)= - ezt = -4y 5 X

Sl -0 % 2, 2t (2D ') -2+ 12x=0
= wl-a)=°

(‘g' =0 Tuwn (é:-xz: o & = =0 or A=
(o>
| XZ\ Tein Ca:‘l?-;[ G 8}\— ‘Q\/D‘




§14.7 Page 71

Example 76. Find the global minimum and maximum of f(x,y) = 42? — 4xy + 2y
on the closed region R bounded by y = 22 and y = 4.
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§14.8 Constrained Optimization, Lagrange
Multipliers

Goal: Maximize or minimize f(x,y) or f(x,y, z) subject to a constraint, g(z,y) = c.

Example 77. A new hiking trail has been constructed on the hill with height

h(z,y) =4 — iﬁ — iyz, above the points y = —0.52? + 3 in the zy-plane. What is
the highest point on the hill on this path? i ‘
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Example 77. A new hiking trail has been constructed on the hill with height

1 1
h(z,y)=4— Z$2 — ZyQ, above the points y = —0.522 + 3 in the zy-plane. What is

the highest point on the hill on this path?
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Method of Lagrange Multipliers: To find the maximum and minimum values

attained by a function f(z,y, z) subject to a constraint g(x,y, z) = ¢, find all points
wher Vf(:c,?j,z) = A\Vy(z,y,2) and g(:c,y,z)%nd compute the value of f at

these points.

If we have more than one constraint g(z,y, z) = ¢1, h(x,y, z) = ¢2, then find all points

where vf(xaya Z) - AVg(x, Y, Z) + MVh(xvyv Z) and g(xaya Z) = (1, h(gj?y? Z) = C2.

Example 78. Find the points on the surface 2> = zy + 4 that are closest to the
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Example 78. Find the points on the surface 2> = zy + 4 that are closest to the

origin. Lagé\— [\\: l )
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Example 79. You try it/ Find the points on the curve 22 + 2y + y*> = 1 in the

xy-plane that are nearest to and farthest from the origin.
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Example 79. You try it/ Find the points on the curve x* + zy + y* = 1 in the

xy-plane that are nearest to and farthest from the origin
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