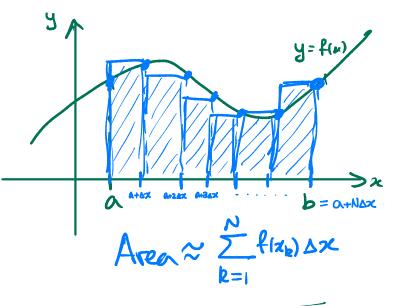
§15.1 Double Integrals, Iterated Integrals, Change of Order

Recall: Riemann sum and the definite integral from single-variable calculus.

Area=
$$\int_a^b f(xc) dx = \lim_{N \to \infty} \sum_{h=1}^N f(xc) + \Delta xc$$

*test point in each sub-introl XbE [a+ less, a+ (h+i) sx] + area of reconste

f(Xx) + Dx



In the limit you get EXACT value of area

Also, Same area w/ other choices of how to pach height so long as x [E [a+kAx, a+(k+) d>x]

such as : + Right end point + left endpoint * midpowy even other -> * average very ht (trape 20 8d rule)

ways eg. L) A Simpson's rule (more complicated) letc. etc.

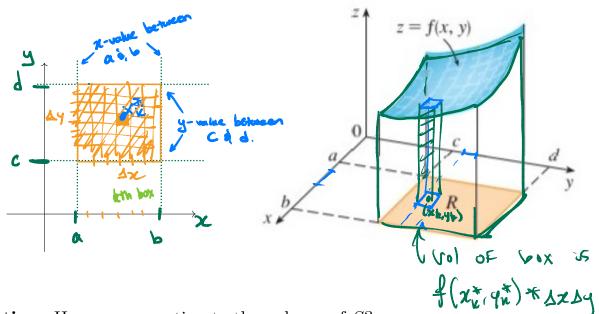
Double Integrals

Volumes and Double integrals Let R be the closed rectangle defined below:

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

Let f(x,y) be a function defined on R such that $f(x,y) \geq 0$. Let S be the solid that lies above R and under the graph f.

Xt = (xx, yx) The win Subinarral test input



Question: How can we estimate the volume of S?

Volume ~ \ \frac{\nu_1}{2} f(x_1^*, y_1^*) sysx In the land
Volume = So So fary dy dre

That I fary dA waren measure

Definition 79. The $\frac{1}{2}$ Ouble weight of f(x,y) over a rectangle R is

 $\iint_{R} f(x,y) \ dA = \lim_{|P| \to 0} \sum_{k=1}^{n} f(x_{k}, y_{k}) \Delta A_{k}$

if this limit exists.

P is the "mesh size", largest size among all of the bases of the tall boxes.

When (2) actually exists. Then we say "f is intermble over 12"

Eg. · fis interable over Rif fix continuous aver

possible of NOT continous our R but

Still integrable.

* Nove : So fair de is a

Signed volume. (e.g. vegative it franco)

represent total volume wy voli alone Count as and vot below 200 count ac - Question: How can we compute a double integral?

Answer: When rate one voitable at a time.

Let f(x,y) = 2xy and lets integrate over the rectangle $R = [1,3] \times [0,4]$.

We want to compute $\int_1^3 \int_0^4 f(x,y) \, dy \, dx$, but lets consider the slice at x=2.

What does $\int_0^4 f(2, y) dy$ represent here?

Purple slice has area @x=z

Area =
$$\int_0^4 f(2, y) dy$$

= $\int_0^4 4y dy = 2y^2 \int_0^4$
= $z*4^2 - z*6^2 = |32| - 0$

 $\frac{2}{2} = f(x,y)$ $\frac{2}{2} = f(2,y)$ $\frac{3}{2}$

If we more since along X-direction is add up all the areas we get, then get become on the

 $|V_0| = \int_{1}^{3} \int_{0}^{4} f(x, y) \, dy \, dx = \int_{1}^{3} \int_{0}^{4} \frac{2\pi y}{2\pi y} \, dy \, dx$ $= \int_{1}^{3} \int_{0}^{4} f(x, y) \, dy \, dx = \int_{1}^{3} \frac{2\pi y}{2\pi y} \, dy \, dx$ $= \int_{1}^{3} \left[(6x - 0) \, dx \right] = 8x^{2} \int_{1}^{3} = 7z - 8 = 64$

In general, if f(x,y) is integrable over $R = [a,b] \times [c,d]$, then $\int_c^d f(2,y) \, dy$ represents:

area of Slore @ $\chi=Z$. (area proper Slore)

What about $\int_{c}^{d} f(x,y)dy \succeq \bigwedge$

the area of the slice of x=const.

Let $A(x) = \int_{0}^{x} f(x,y) dy$. Then,

IR f(x,y) de (doble internal)

Volume = $\int_a^b A(x) dx = \int_a^b \int_c^d f(x,y) dy dx$

This is called an iterated interior

Example 80. Evaluate $\int_{1}^{2} \int_{3}^{4} 6x^{2}y \, dy \, dx$. = $\int_{1}^{2} 3x^{2}y^{2} \Big|_{3}^{4}$

 $= \int_{0}^{2} 3x^{2} + 16 - 3x^{2} + 9 dx = \int_{0}^{2} 7 + 3x^{2} dx = \int_{0}^{2} 7 + 3x^{2} dx$ $= 7x^{3} \Big|_{0}^{2} = 7(z^{3}) - 7(z^{3}) = 7 + 7 = 49$

Theorem 81 (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times$

[c,d], then

Ja Je f(x,4) dy dx = [d] b

f(x,4) dx dy

"Order dem marter" first x.

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 82. You try it! Integrate:

a)
$$\int_{0}^{2} \int_{-1}^{1} x - y \ dy \ dx$$
 easy

b)
$$\int_0^1 \frac{2}{1+x^2} dx$$

c)
$$\int_1^4 \int_1^e \frac{\ln x}{xy} dx dy$$
 HARD!

Example 82. You try it! Integrate:

a)
$$\int_{0}^{2} \int_{-1}^{1} x - y \, dy \, dx$$
 easy
$$= \int_{0}^{2} x - (-x) - 0 \, dx$$

$$= \int_{0}^{2} 2x \, dx = x^{2} \Big|_{0}^{2} = 4$$
b) $\int_{0}^{1} \int_{0}^{1} \frac{y}{1 + xy} \, dx \, dy$ medium
$$\int_{0}^{1} \int_{0}^{1} \frac{y}{1 + xy} \, dx \, dy = \int_{0}^{1} \ln(1 + xy) \Big|_{0}^{1} \, dy = \int_{0}^{1} \ln(1 + y) - y \ln(1) \, dy$$

$$\lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \int_{0}^{1} \frac{dx}{x^{2}} \, dx \, dy = \int_{0}^{1} \ln(1 + xy) \Big|_{0}^{1} \, dy = \int_{0}^{1} \ln(1 + y) - y \ln(1) \, dy$$

$$\lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \int_{0}^{1} \frac{dx}{x^{2}} \, dx \, dy = \lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \int_{0}^{1} \frac{dx}{x^{2}} \, dx \, dx + \lim_{x \to x^{2}} \frac{1}{x^{2}} \, dy = \lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \, dy = \lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \, dy = \lim_{x \to x^{2}} \lim_{x \to x^{2}} \frac{1}{x^{2}} \int_{0}^{1} \frac{dx}{x^{2}} \, dx = \lim_{x \to x^{2}} \frac{1}{x^{2}} \, dx$$

Ans: use Fubini's Thin!

Example 83. Compute $\iint_R xe^{e^{e^y}} dA$, where R is the rectangle $[-1,1] \times [0,4]$.

Hint: Fubini's Theorem.

IDEA? $\int_{-1}^{4} \chi e^{e^{2}} dy dx = 0$

Better 1dea? 14 SI Ree dx dy

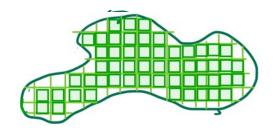
= \frac{4}{2}\frac{2}{

= $\int_{0}^{4} e^{e^{2}}(1)^{2} - (-1)^{2} dy$

= \(\frac{4}{30} \) \(\text{O} \text{Peeq} \) \(\frac{4}{3} = \left[\text{O} \right] \)

§15.2 Double Integrals on General Regions

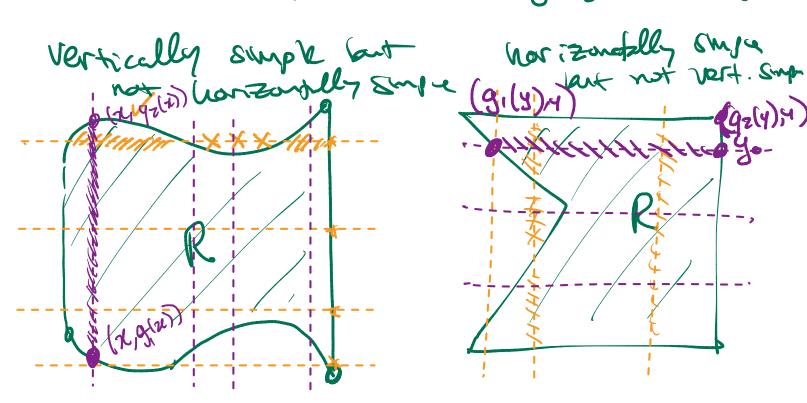
Question: What if the region R we wish to integrate over is not a rectangle?



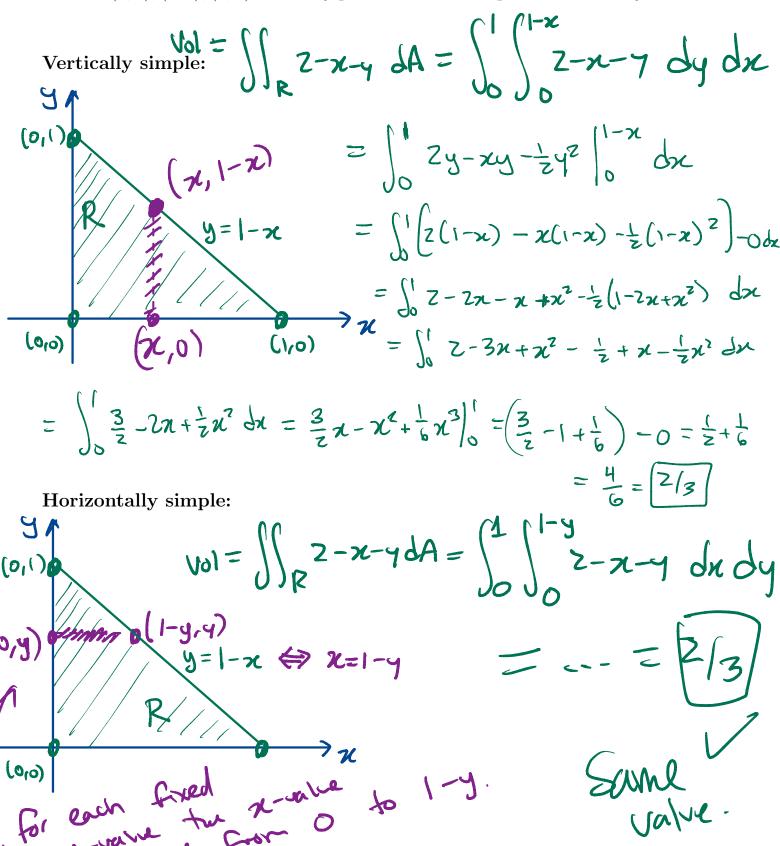
leed to sample (x,1)-values

Answer: Repeat same procedure - it will work if the boundary of R is smooth and f is continuous.

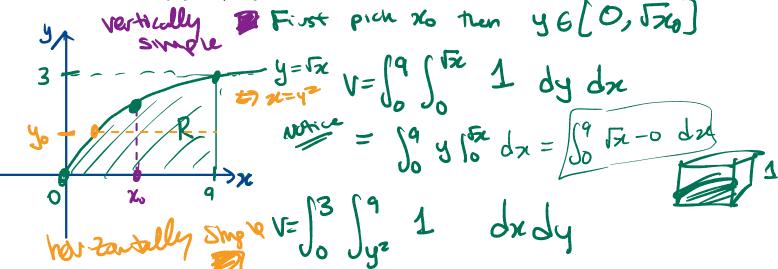
DEA: We need to find some way to express the boundary curves like y = g(x) or x = g(y).



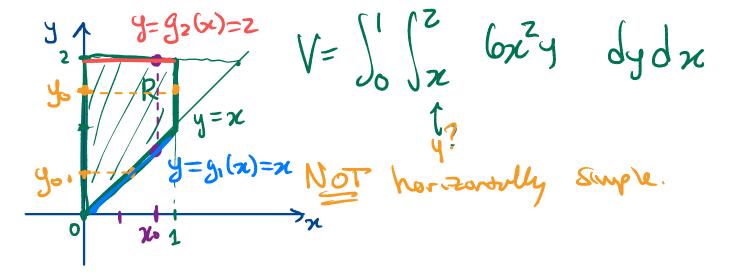
Example 84. Compute the volume of the solid whose base is the triangle with vertices (0,0),(0,1),(1,0) in the xy-plane and whose top is z=2-x-y.



Example 85. Write the two iterated integrals for $\iint_R 1 \ dA$ for the region R which is bounded by $y = \sqrt{x}, y = 0$, and x = 9.

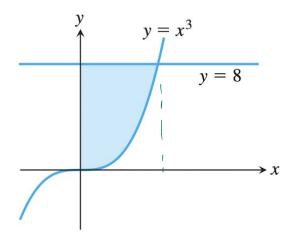


Example 86. Set up an iterated integral to evaluate the double integral $\iint_R 6x^2y \ dA$, where R is the region bounded by x = 0, x = 1, y = 2, and y = x.

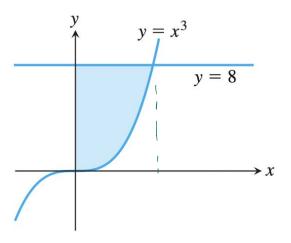


 $\S15.2$

Example 87. You try it! Write the two iterated integrals for $\iint_R 1 \ dA$ for the region R which is bounded by x = 0, y = 8, and $y = x^3$.



Example 87. You try it! Write the two iterated integrals for $\iint_R 1 \ dA$ for the region R which is bounded by x = 0, y = 8, and $y = x^3$.



(Vertical)

$$Volume = \int_{0}^{2} \int_{x^{3}}^{8} 1 \, dy \, dx$$

Example 88. Sketch the region of integration for the integral for (x,4) ER

$$\int_{0}^{1} \int_{4x}^{4} f(x,y) \, dy \, dx.$$

(4x, 47)

$$V = \int_{0}^{4} \int_{0}^{9/4} f(x, y) dx dy$$

Vol= () p 1 dA = Area(R)

