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§15.5iple Integrals & Applications 77

Idea: Suppose D is a solid region in R3. If f(x,y, 2) is a function on D, e.g. mass

density, electric charge density, temperature, etc., we can approximate the total

value of f on D with a Riemann sum.
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by breaking D into small rectangular prisms AVj.
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Taking the limit gives a A&A}o\; *\N\“jnjﬂ jS i(—;{, q) &A
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Again, we have Fubini’s theorem to evaluate these triple integrals as iterated inte-
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Other important spati pplications: L/4 57
esny
TABLE 15.1 Mass and first moment formulas %
REE-DIMENSIONAL SOLID Yo appe’
Mass: M = /[/6 dVv 8 = &(x. v, z) is the density at (x, N A“\y
i —

irst moments about the coordinate planes: Qg“-’mc

M, = ///.\-de. M_= //]yédv, M, = /]/:6(1\1
b D D R
Center of mass: ,g G
? M‘.: M\ M .

TWO-DIMENSIONAL PLATE

Mass: M = //6 dA & = &(x. v) is the density at (x. y)
First moments: M, /] /] y & dA
R

Center of mass: X = —‘.
M
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Example 102. 1. How to do.the computation:\\(
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3. How to reorder the differentials: Write an equivalent iterated integral in
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Example 103. You try it/ Evaluate the triple integrals. What is the shape of the

region of integration D in each case?

e 62 63 1
(a) / / / — dz dy dz
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(b) / / / ysinz dr dy dz
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Example 103. You try it/ Evaluate the triple integrals. What is the shape of the

i f int tion D i h ?
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We will think about converting triple integrals to iterated integrals in terms of the

of D on one of the coordinate planes.

Case 1: z-simple) region. If R is the projection of D on the xy-plane and D is bounded
above and below by the surfaces z = h(z,y) and z = g(x,y), then

///p J(@.y,z) dV = //R (/g:;y)f(x,y, 2) dz) dy dx

~h (';,\1'\

Case 2: y-simple) region. If R is the projection of D on the zz-plane and D is bounded
right and left by the surfaces y = h(z, z) and y = g(z, 2), then

///Df(a:,y,z) dV=//R </QZZZ)f(x,y,z) dy) dz dx

_a ()
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Case 3: z-simple) region. If R is the projection of D on the yz-plane and D is bounded
front and back by the surfaces x = h(y, z) and = = g(y, z), then

///D flx,y,2) dV = //R (/g:ij)f(x,y,z) dx) dz dy

D R
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Example 104. Write an integral for th the solid D in the first octant with
’ 2y < 2z <3 — 22 —@With density 0(z,y, z) = %y + 0.1 by treating the solid as a)

z-simple and b) z-simple. Is the solid also y-simple?
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Example [104 (cont.) D= 2y < z<3-— x® — y2
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Rules for Triple Integrals for the Sketching Impaired (credit to Wm.
Douglas Withers)

Rule 1: Choose a variable appearing exactly twice for the next integral.

Rule 2: After setting up an integral, cross out any constraints involving
the variable just used.

Rule 3: Create a new constraint by setting the lower limit of the preceding
integral less than the upper limit.

Rule 4: A square variable counts twice.

Rule 5: The region of integration of the next step must lie within the
domain of any function used in previous limits.

Rule 6: If you do not know which is the upper limit and which is the lower,
take a guess - but be prepared to backtrack.

Rule 7: When forced to use a variable appearing more than twice, choose
the most restrictive pair of constraints.

Rule 8: When unable to determine the most restrictive pair of constraints,
set up the integral using each possible most restrictive pair and
add the results.

Example 105. You try it/ Find the volume of the region in the first quadrant
bounded by the coordinate planes and the planes x + z =1, y + 2z = 2.
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24. The region in the first octant bounded by the coordinate planes quadrant
and the planes x + z =1,y + 2z = 2




