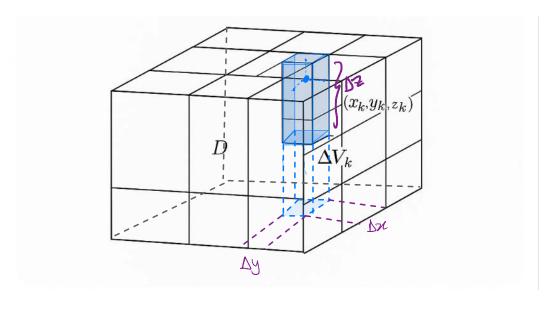
§15.5-15.6 Triple Integrals & Applications

Idea: Suppose D is a solid region in \mathbb{R}^3 . If f(x, y, z) is a function on D, e.g. mass density, electric charge density, temperature, etc., we can approximate the total value of f on D with a Riemann sum.

$$\sum_{k=1}^{n} f(x_k, y_k, z_k) \Delta V_k,$$

by breaking D into small rectangular prisms ΔV_k .



Taking the limit gives a

 $\qquad \qquad : \iiint_D f(x,y,z) \ dV$

Important special case:

$$\iiint_D 1 \ dV = \underline{\hspace{1cm}}$$

Again, we have Fubini's theorem to evaluate these triple integrals as iterated inte-

grals.

 $\int_{a}^{b} \int_{c}^{d} \int_{e}^{4} f(x,y,z) dx dx dx = \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} f(x,y,z) dx dx dx$

Other important spatial applications:

TABLE 15.1 Mass and first moment formulas

THREE-DIMENSIONAL SOLID

Mass: $M = \iiint_D \delta dV$ $\delta = \delta(x, y, z)$ is the density at (x, y, z).

First moments about the coordinate planes:

$$M_{yz} = \iiint_D x \, \delta \, dV, \qquad M_{xz} = \iiint_D y \, \delta \, dV, \qquad M_{xy} = \iiint_D z \, \delta \, dV$$

Center of mass:

$$\bar{x} = \frac{M_{yz}}{M}, \qquad \bar{y} = \frac{M_{xz}}{M}, \qquad \bar{z} = \frac{M_{xy}}{M}$$

TWO-DIMENSIONAL PLATE

Mass:
$$M = \iint_{B} \delta dA$$
 $\delta = \delta(x, y)$ is the density at (x, y) .

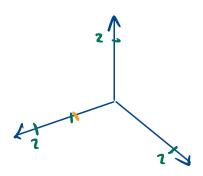
First moments:
$$M_y = \iint_R x \, \delta \, dA$$
, $M_x = \iint_R y \, \delta \, dA$

Center of mass:
$$\bar{x} = \frac{M_y}{M}$$
, $\bar{y} = \frac{M_x}{M}$

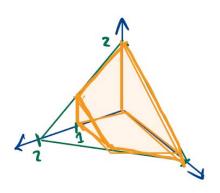
Example 102. 1. How to do the computation:

Compute
$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx$$
.

2. What does it mean: What shape is this the volume of?



3. How to reorder the differentials: Write an equivalent iterated integral in the order $dy \ dz \ dx$.



Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

(a)
$$\int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{xyz} dx dy dz$$

(b)
$$\int_0^{\pi/3} \int_0^1 \int_{-2}^3 y \sin z \ dx \ dy \ dz$$

Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

(a)
$$\int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{xyz} dx dy dz$$

$$= \int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{xyz} dx dy dz$$

$$= \int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \ln(x) \Big|_{1}^{e^{3}} dy dz = \int_{1}^{e} \int_{1}^{e^{2}} \frac{1}{yz} + 3 dy dz$$

$$= \int_{1}^{e} \frac{3}{z} \ln y \Big|_{1}^{e^{2}} dz = \int_{1}^{e} \frac{3}{z} (z-0) dz = 6 \ln z \Big|_{1}^{e} = 6-0$$

$$= 6$$

(b)
$$\int_{0}^{\pi/3} \int_{0}^{1} \int_{-2}^{3} y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

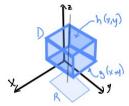
$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{0}^{1} 5y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dz + \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dz + \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dz + \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dz + \int_{0}^{\pi/3} \int_{0}^{1} 5y \sin z \, dx \, dz + \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/3} \int_{0}^{\pi/$$

We will think about converting triple integrals to iterated integrals in terms of the $_$ of D on one of the coordinate planes.

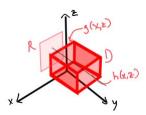
Case 1: z-simple) region. If R is the projection of D on the xy-plane and D is bounded above and below by the surfaces z = h(x, y) and z = g(x, y), then

$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(x,y)}^{h(x,y)} f(x,y,z) \ dz \right) \ dy \ dx$$



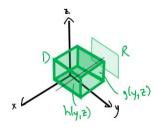
Case 2: y-simple) region. If R is the projection of D on the xz-plane and D is bounded right and left by the surfaces y = h(x, z) and y = g(x, z), then

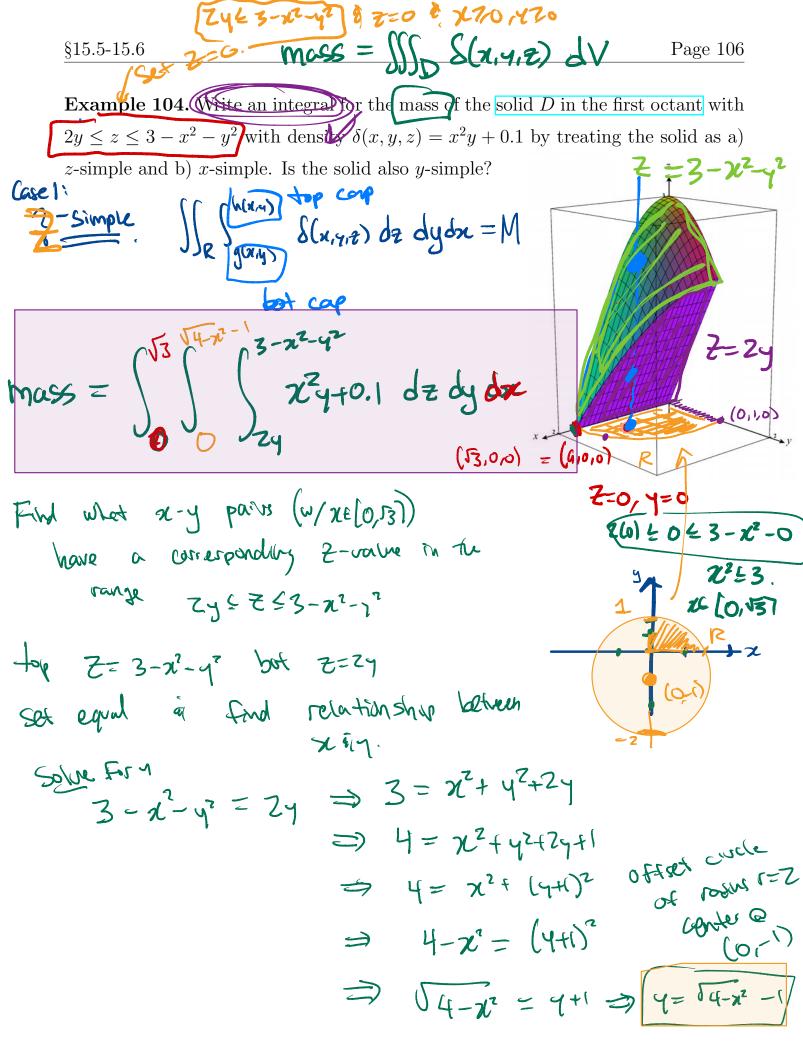
$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(x,z)}^{h(x,z)} f(x,y,z) \ dy \right) \ dz \ dx$$



Case 3: x-simple) region. If R is the projection of D on the yz-plane and D is bounded front and back by the surfaces x = h(y, z) and x = g(y, z), then

$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(y,z)}^{h(y,z)} f(x,y,z) \ dx \right) \ dz \ dy$$





Example 104 (cont.) $D / 2y \le z \le 3 - x^2 - y^2$

Case 3:

$$M = \iint_{\mathbf{R}} \int_{q(\mathbf{x},\mathbf{y})}^{\mathbf{h}(\mathbf{x},\mathbf{y})} S(\mathbf{x},\mathbf{y},\mathbf{z}) d\mathbf{x} d\mathbf{z} d\mathbf{y}$$

pour segun R debud on GE [O, a]

indersection at Z=Zy and $Z=3-y^2$ is Qy=a

$$\Rightarrow$$
 $y^2 + 2y - 3 = 0$

yelo,17

ZE [24,3-42]

mass =)) 3-2-47
27+01 dx dz dy

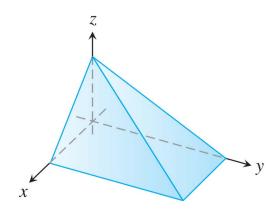
2-3-X2-42

=> X= J3-7-42

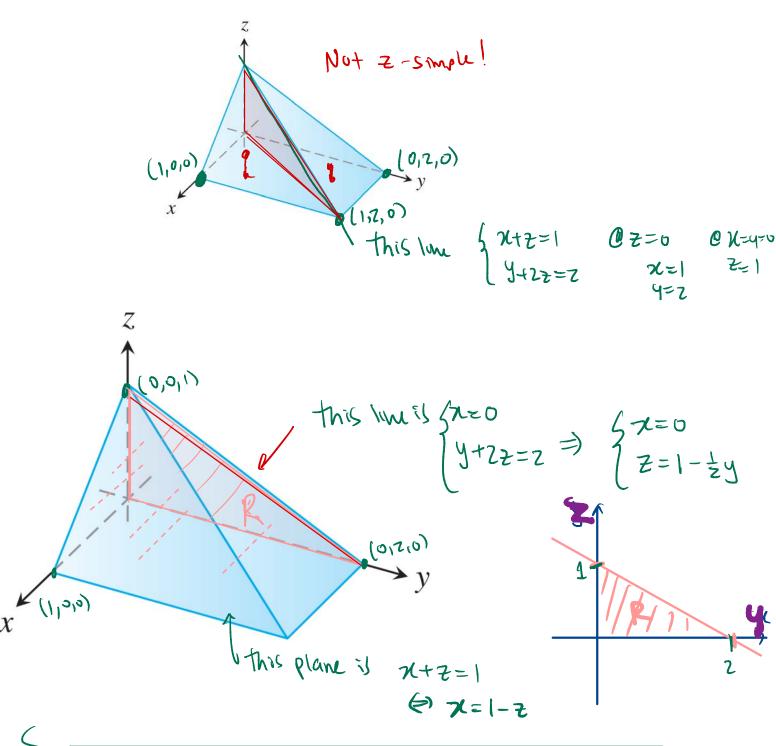
Rules for Triple Integrals for the Sketching Impaired (credit to Wm. Douglas Withers)

- Rule 1: Choose a variable appearing exactly twice for the next integral.
- Rule 2: After setting up an integral, cross out any constraints involving the variable just used.
- Rule 3: Create a new constraint by setting the lower limit of the preceding integral less than the upper limit.
- Rule 4: A square variable counts twice.
- Rule 5: The region of integration of the next step must lie within the domain of any function used in previous limits.
- Rule 6: If you do not know which is the upper limit and which is the lower, take a guess but be prepared to backtrack.
- Rule 7: When forced to use a variable appearing more than twice, choose the most restrictive pair of constraints.
- Rule 8: When unable to determine the most restrictive pair of constraints, set up the integral using each possible most restrictive pair and add the results.

Example 105. You try it! Find the volume of the region in the first quadrant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.



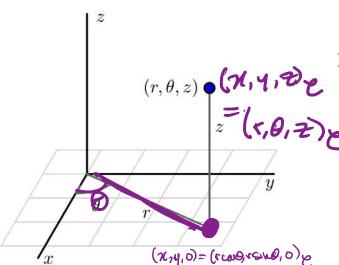
24. The region in the first octant bounded by the coordinate planes quadrant and the planes x + z = 1, y + 2z = 2



$$|V_0| = \int_0^2 \int_0^{1-\frac{1}{2}y} \left(1-\frac{1}{2}y\right) \int_0^{1-\frac{1}{2}y} \int_0^{1-\frac{1}{2}y} dy$$

§15.7 Triple Integrals in Cylindrical & Spherical Coordinates

Cylindrical Coordinate System

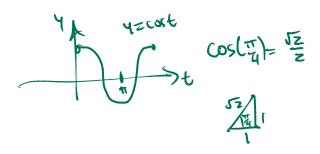


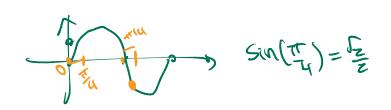
Cylindrical to Cartesian: (۲,۹,۵)

$$\int x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = z$$

Cartesian to Cylindrical:

$$r^{2} = x^{2} + y^{2}$$
, $\tan(\theta) = \frac{y}{x}$, $z = z$



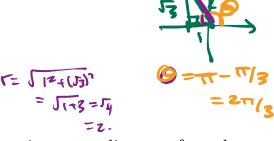


Conventions: As before for doubleintegrals: 170 and

DE[0,211] or DE[-11,1]

Example 108. a) Find cylindrical coordinates for the point with Cartesian coordinates $(-1, \sqrt{3}, 3)$.

want (r,0,2)=(2,3,3)



b) Find Cartesian coordinates for the point with cylindrical coordinates $(2, 5\pi/4, 1)$.

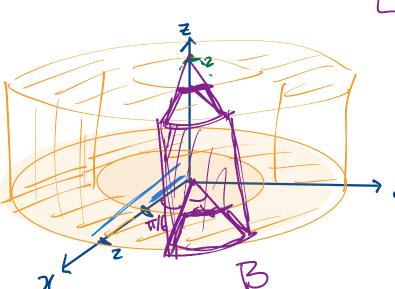
$$\chi = 2 + \cos(\frac{5\pi}{4}) = 2 + \frac{5\pi}{2} = -5\pi$$

 $y = 2 + \sin(\frac{5\pi}{4}) = 2 + \frac{5\pi}{2} = -5\pi$

$$\left(-Jz,-Jz,1\right)$$

Example 109. In xyz-space sketch the cylindrical box Example 109. In xyz-space sketch the cylindrical box

 $B = \{ (r, \theta, z) \mid 1 \le r \le 2, /\pi/6 / \le \theta \le \pi/3, \ 0 \le z \le 2 \}.$

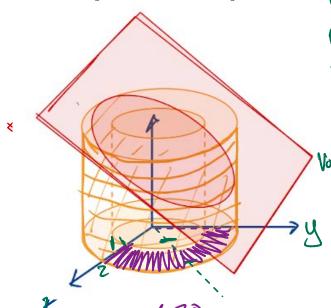


1 Charge (Cylindrocal)

Triple Integrals in Cylindrical Coordinates

We have $dV = \sqrt{\frac{1}{2000}} dV$

Example 110. Set up a iterated integral in cylindrical coordinates for the volume of the region D lying below z = 2, above the xy-plane, and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. TE/ 1,27

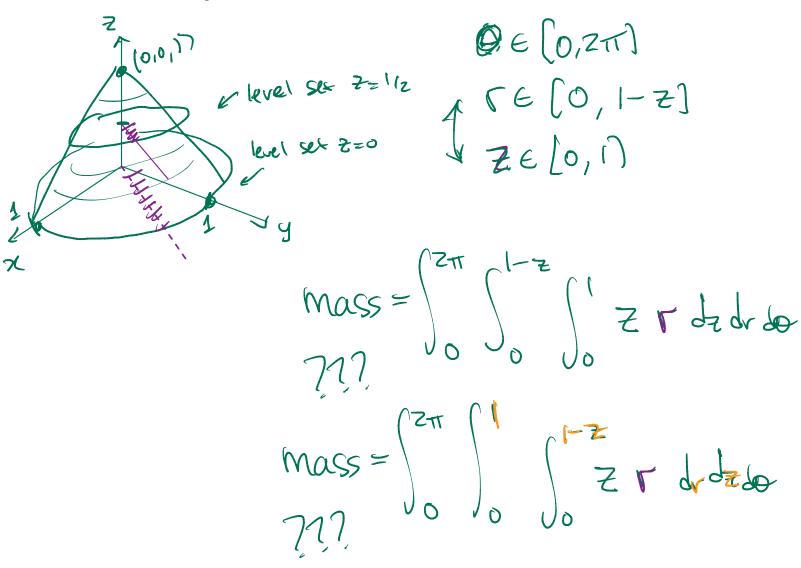


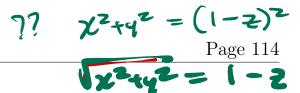
DE (0,24) ze[0,742) ??

161= 12 12 1000+2 1 + 1 dz dodr

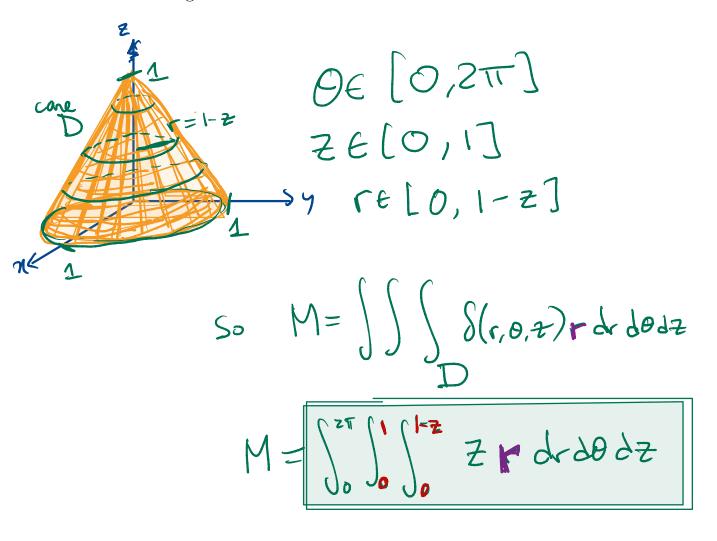
§15.7 Page 114

Example 111. You try it! Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.





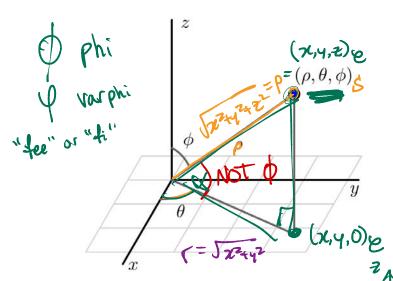
Example 111. You try it! Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.



other options also work $M = \int_0^{2\pi} \int_0^1 \int_0^{1-r} zr \, dz \, dr \, d\theta$

or even $M = \int_{0}^{1} \int_{0}^{1-r} \left(\frac{2\pi}{2r} \right) d\theta dz dr also fine!$

Spherical Coordinate System



Spherical to Cartesian:

$$x = \rho \sin(\varphi) \cos(\theta)$$

$$y = \rho \sin(\varphi) \sin(\theta)$$

$$z = \rho \cos(\varphi)$$

Cartesian to Spherical:

$$\frac{\rho^2 = x^2 + y^2 + z^2}{\tan(\theta) = \frac{y}{x}}$$

$$\tan(\varphi) = \frac{\sqrt{x^2 + y^2}}{z}$$



Conventions:

$$P \ge 0$$
 $O \in [0,2\pi]$ or $[-\pi,\pi]$
 $\phi \in [0,\pi]$

Example 112. a) Find spherical coordinates for the point with Cartesian coordinates $(-2, 2, \sqrt{8})$.

$$\begin{array}{ll}
(-7,7,58) & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2,7,58)} & \rho = \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 2^2 + 58^2} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 4 + 4 + 8} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 4 + 4 + 8} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 4 + 4 + 8} = \sqrt{4 + 4 + 8} \\
= \sqrt{(-2)^2 + 4 + 4 + 8} = \sqrt{4 + 4 + 8} = \sqrt{$$

b) Find Cartesian coordinates for the point with spherical coordinates $(2, \pi/2, \pi/3)$

$$(2,\pi/2,\pi/3)$$

$$2 = 2 \sin(\pi t_3) \cos(\pi t_2) = 2 + \frac{\pi}{2} + 0$$

 $4 = 2 \sin(\pi t_3) \sin(\pi t_2) = 2 + \frac{\pi}{2} + 1$
 $2 = 2 \cos(\pi t_3) = 2 + \frac{\pi}{2} = 1$
 $(2, \pi t_2, \pi t_3) = (0, 53, 1)$

6 The two common lowercase phi symbols:

φ (curly phi) — sometimes called "script phi" or "open phi"

Looks like a curly or loopy "C" with a vertical line

Unicode: U+03D5

Often used in physics and engineering (e.g., magnetic flux)

φ (straight phi) — often just "phi"

Looks like a circle with a vertical line through it

Unicode: U+03C6

Often used in math, philosophy, and logic

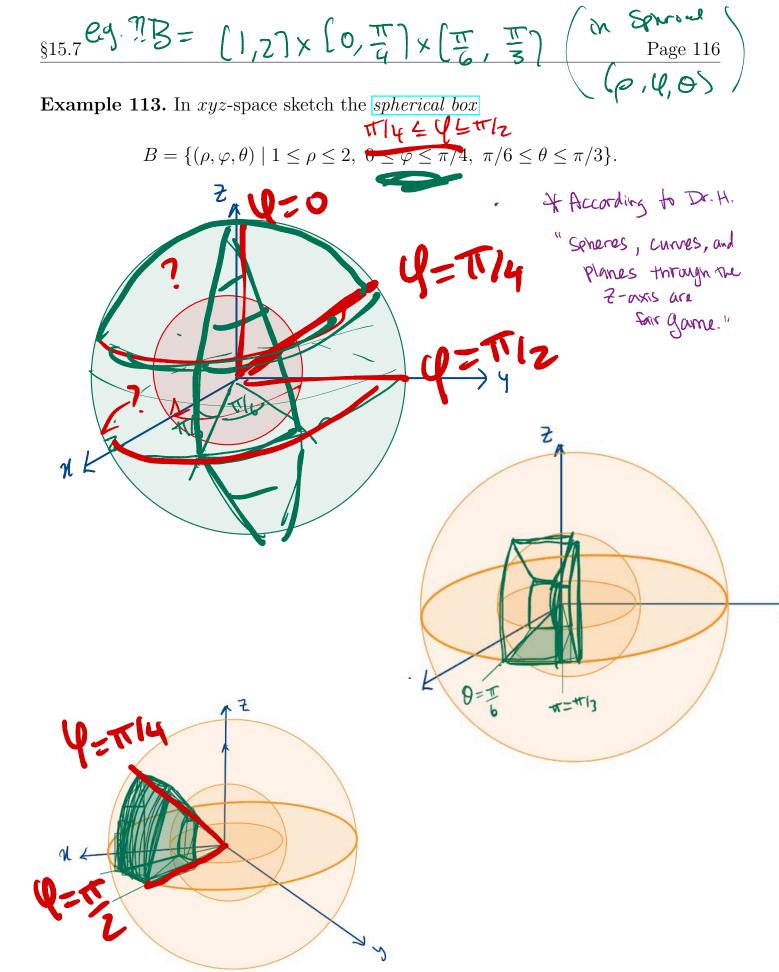
How to draw Them

show to draw Them

show here

there is the short here

t

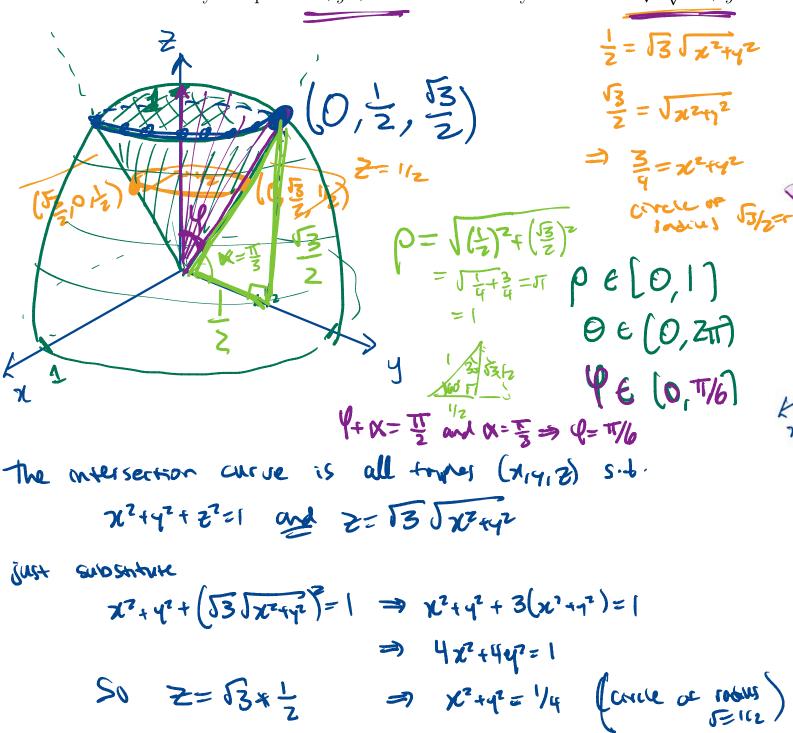


Set up true forplanes have sphere W/ radius P=3. a density 7-p cosq PE/TIZ,TT mass_ 3 2th the poore of 9 E (0,24) PE [0,3] pz sin y mass=)0)x / 1 / 27 Cos 4 sin 4 14 dodp

Triple Integrals in Spherical Coordinates

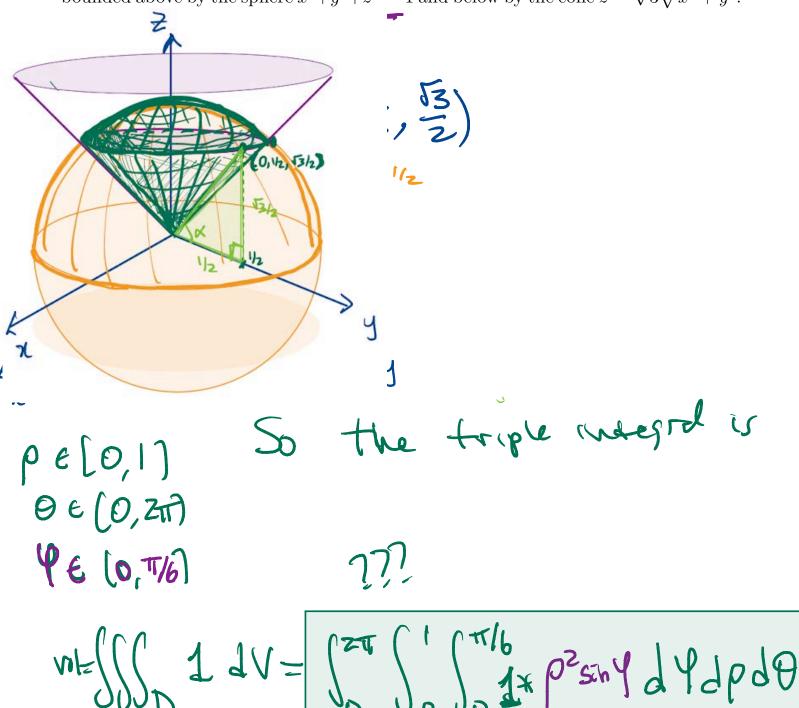
We have dV =

Example 114. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z=\sqrt{3}\sqrt{x^2+y^2}$.



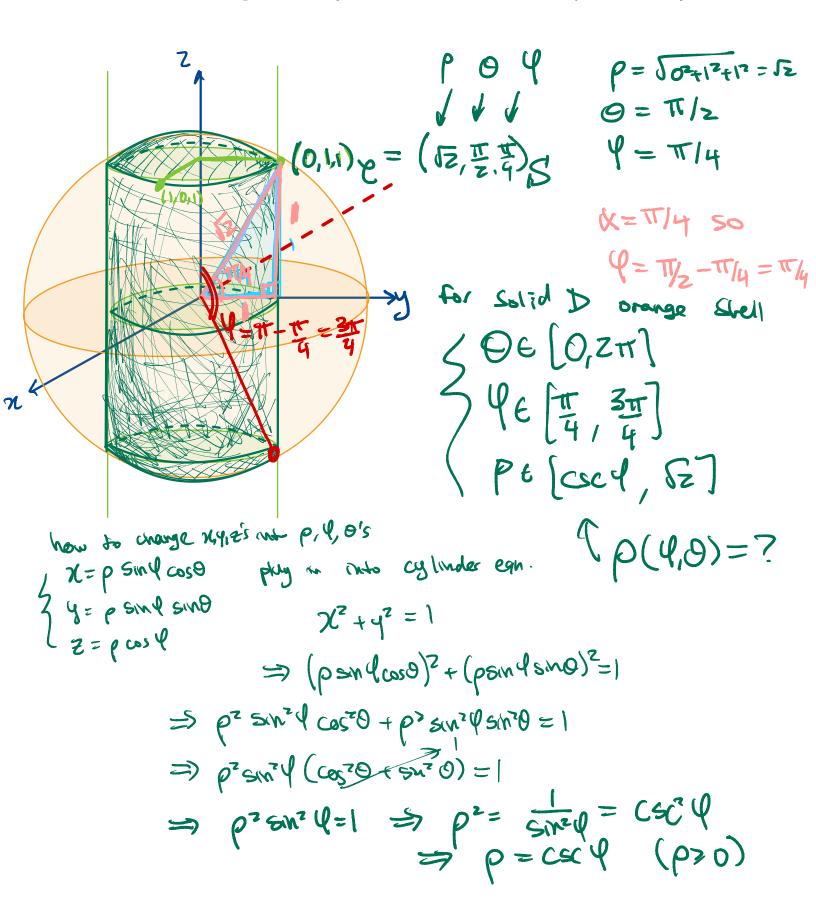
We have dV = 2500 Jp Jb Jo

Example 114. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z=\sqrt{3}\sqrt{x^2+y^2}$.



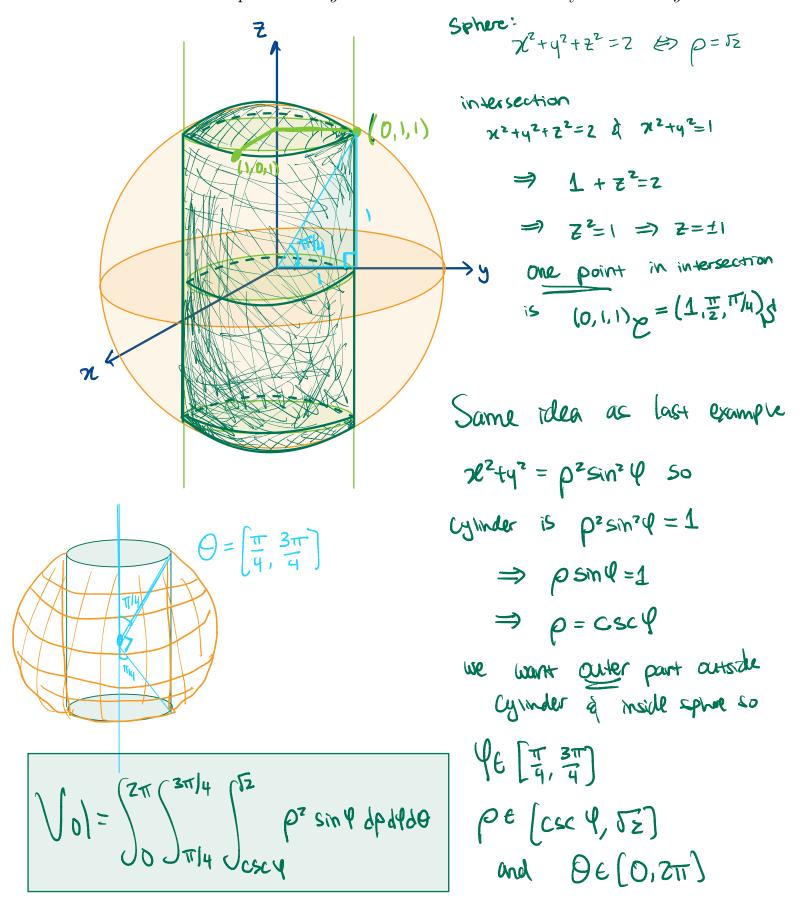
§15.7 Page 118

Example 115. You try it! Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

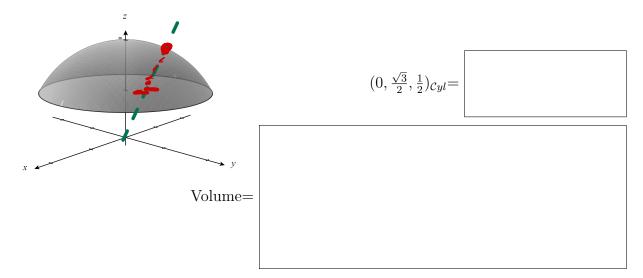


§15.7 Page 118

Example 115. You try it! Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

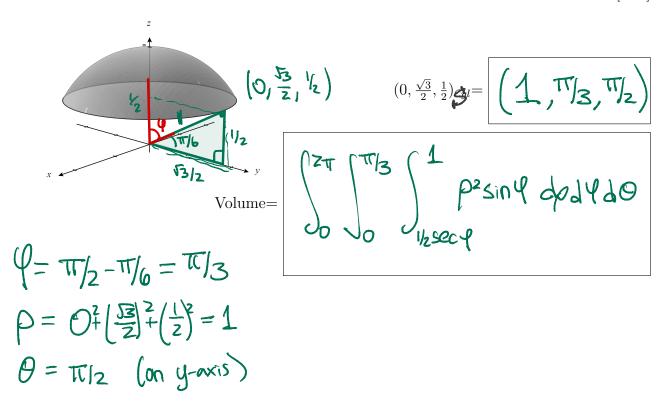


- 5. (6 points) Let D be the smaller cap cut from a solid ball of radius 1 units by the plane z=1/2. The point $P(0,\frac{\sqrt{3}}{2},\frac{1}{2})$ is on D at the intersection of the ball and the plane.
 - (a) Find the eylindrical coordinates (ρ, φ, θ) of the point $P(0, \frac{\sqrt{3}}{2}, \frac{1}{2})$. [AN]
 - (b) Express the volume of D as an iterated triple integral in spherical coordinates. Do not evaluate! [AN]



- 5. (6 points) Let D be the smaller cap cut from a solid ball of radius 1 units by the plane z=1/2. The point $P(0,\frac{\sqrt{3}}{2},\frac{1}{2})$ is on D at the intersection of the ball and the plane.
 - (a) Find the cylindrical coordinates (ρ, φ, θ) of the point $P(0, \frac{\sqrt{3}}{2}, \frac{1}{2})$. [AN]
 - (b) Express the volume of D as an iterated triple integral in spherical coordinates.

 Do not evaluate! [AN]



$$Z = 1/2 = \rho \cos \varphi \Rightarrow \rho = \frac{1}{2\cos\varphi} = \frac{1}{2}\sec\varphi$$

So D: $\Theta \in [0, 2\pi]$, $\varphi \in [0, \pi/3]$, $\rho \in [\frac{1}{2}\sec\varphi, 1]$

§15.8 Page 119

§15.8 Change of Variables in Multiple Integrals

Thinking about single variable calculus: Compute $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx = A$ To Motivers: Maybe try X=Zsino du = 20050 d0 Eq. dA = dzedy = r drd0 so A= 1 + 2000 + 2000 + 2000 + 2000 + 14-(2500)2 + 2000 + 14-(2500)2 $= \int_{x}^{4} \frac{2\cos\theta}{\sqrt{4-4\sin\theta}}$ wto born cong. " integration factor" = 14 2000 40 dV = dxdydz = (* 1 90 = < dr d 0 d z = 0 | * = bs swh 91969 5 1/2 = Sin- $\left(\frac{x}{2}\right)^{1/3}$ When you convert trope integrals into = 502-((1/2) -502-(1/2) cylondional or spheroad coords. $=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}$

Theorem 116 (Substitution Theorem). Suppose T(u, v) is a one-to-one, differentiable transformation that maps the region G in the uv-plane to the region R in the ivtegration Factor. xy-plane. Then

$$\iint_{R} f(x,y) \ dx \ dy = \iint_{G} f(\mathbf{T}(u,v)) \left| \det(\mathbf{DT}(\mathbf{u},\mathbf{v})) \right| \ du \ dv.$$

Example 117. Evaluate $\int_{y/2}^{y/2+1} \frac{2x-y}{2} dx dy \text{ via the transformation } x = u+v$ y = 2v.

1. Find T:
$$T(\begin{bmatrix} u \\ v \end{bmatrix}) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u + v \\ 2v \end{bmatrix}$$

What about the inserration limits

So if ye [0,4) then re [0,2]

$$\frac{1}{2} \frac{1}{2+1} = \frac{1}{2} \frac{1}{2+1} = \frac{1}{2} \frac{1}{2} = \frac{1}{2$$

$$DT = \begin{bmatrix} \chi_{1} & \chi_{2} \\ \chi_{3} & \chi_{5} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ \Theta & 2 \end{bmatrix}$$

NOTE: often you are

given $T^{-1}(x_{14})$ e.g. $T^{-1}(x_{14}) = \begin{bmatrix} (2x-y)/2 \\ y/2 \end{bmatrix} = \begin{bmatrix} (x - y)/2 \\ y/2 \end{bmatrix}$

for xy. to find T(u,v) = [x]

 $(x,y) \in \left[\frac{4}{2}, \frac{7}{2} + 1\right] \times (0,4)$

2. Find G and sketch:

@
$$y=0 \Rightarrow v=0$$
 > so $y \in [0,4]$ 2
@ $y=4 \Rightarrow v=2$ | because $v \in [0,2)$

@
$$x = \frac{7}{2} \Rightarrow u = 0$$
 > So $x \in \left(\frac{4}{2}, \frac{7}{2} + 1\right)$ @ $x = \frac{4}{2} + 1 \Rightarrow u = 1$ becomes $u \in (0, 1)$

$$\int_{0}^{4} \int_{1/2}^{\frac{1}{2}+1} \frac{2\pi-4}{2} d\pi dy = \int_{0}^{2} \int_{0}^{2} \frac{7}{2} du dv$$

$$R$$

3. Find Jacobian:

$$T([\gamma])=[a+v]$$
 $DT=[i]$ [set $DT[=2]$

J (MA) E [0,1) x [0,2)

1(4))=[21]7

4. Convert and use theorem:

$$\iint_R f(x,y) \ dx \ dy = \iint_G f(\mathbf{T}(u,v)) |\det(D\mathbf{T}(u,v))| \ du \ dv.$$

$$\int_{0}^{4} \int_{y/2}^{y/2+1} \frac{2x-y}{2} \, dx \, dy = \int_{0}^{2} \int_{0}^{1} 2 \underbrace{\left(u + v \right) - 2v}_{2} \, du \, dv$$

$$= \int_{0}^{2} \int_{0}^{2} u 2 du dv = \int_{0}^{2} \frac{2}{2} u^{2} | dv$$

$$= \int_{0}^{2} 4 dv = 4 v |_{0}^{2} = 2$$

Example 118. a) You try it! Find the Jacobian of the transformation

$$x = u + (1/2)v, \ y = v.$$

write
$$T$$
 $x = u + (1/2)v$, $y = v$. The Talebran Compute DT total $T((u)) = (u+\frac{1}{2}v)$ derivative of T . $T((u)) = (u+\frac{1}{2}v)$ $det DT = 1$

So $DT = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix}$ | det DT = 1.

b) You try it! Which transformation(s) seem suitable for the integral

$$\int_0^2 \int_{y/2}^{(y+4)/2} y^3 (2x-y) e^{(2x-y)^2} dx dy?$$

i)
$$u = x, v = y$$

$$iv)u = y, v = 2x - y$$

ii)
$$u = \sqrt{x^2 + y^2}, v = \arctan(y/x)$$

$$v) u = 2x - y, v = y$$

(iii)
$$u = 2x - y, v = y^3$$

$$vi)u = e^{(2x-y)^2}, v = y^3$$

Example 118. a) You try it! Find the Jacobian of the transformation

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y = v.$$

$$x = u + (1/2)v, \ y$$

b) You try it! Which transformation(s) seem suitable for the integral

$$\int_0^2 \int_{y/2}^{(y+4)/2} y^3 (2x-y) e^{(2x-y)^2} \ dx \ dy?$$
 i) $u=x, v=y$ does nothing (i) $u=y, v=2x-y$ ii) $u=\sqrt{x^2+y^2}, v=\arctan(y/x)$ (v) $u=2x-y, v=y$

iii) $u = 2x - y, v = y^3$

 $vi)u = e^{(2x-y)^2}$. $v = u^3$

try (iv)

If
$$U^3 V e^{V^2} * |DT| du dv$$
 Seems helpful. Might be enter to Figure

try (v)

If $V^3 u e^{u^2} * |DT| du dv$

No ?

Theorem 119 (Derivative of Inverse Coordinate Transformation). If $\mathbf{T}(u, v)$ is a one-to-one differentiable transformation that maps a region G in the uv-plane to a region R in the xy-plane and $T(u_0, v_0) = (x_0, y_0)$, then we have

$$|\det(D\mathbf{T}(u_0, v_0))| = \frac{1}{|\det(D\mathbf{T}^{-1}(x_0, y_0))|}$$

General fact about invertible matrices

 $det A = \frac{1}{det A^{-1}}$

Example 120. Let's evaluate $\iint_R \frac{y(x+y)}{x^3}$ where R is the region in the xy-plane bounded by y=x,y=3x,y=1-x, and y=2-x. Consider the coordinate transformation u=x+y,v=y/x.

1. Find the rectangle G in the uv plane that is mapped to R

=

1,3

2. Evaluate $f(\mathbf{T}(u,v))|\det(D\mathbf{T}(u,v))|$ in terms of u and v without directly solving for \mathbf{T} using the theorem above

$$|\det(D\mathbf{T}(u_0, v_0))| = \frac{1}{|\det(D\mathbf{T}^{-1}(x_0, y_0))|}$$

§15.8 Page 125

3. Use the Substitution Theorem to compute the integral.