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MATH 2550 G/J w/ Dr. Sal Barone
- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.4, 12.5

• Set classroom norms

• Describe the big-picture goals of the class

• Review R3 and the dot product

• Introduce the cross product and its properties

Class Values/Norms:

• Mistakes are a learning opportunity

• Mathematics is collaborative

• Make sure everyone is included

• Criticize ideas, not people

• Be respectful of everyone

•

•
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Big Idea: Extend di↵erential & integral calculus.

What are some key ideas from these two courses?

Di↵erential Calculus Integral Calculus

Before: we studied single-variable functions f : R ! R like f(x) = 2x2 � 6.

Now: we will studymulti-variable functions f : Rn ! Rm: each of these functions
is a rule that assigns one output vector with m entries to each input vector with n

entries.
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§12.1: Three-Dimensional Coordinate Systems

Question: What shape is the set of solutions (x, y, z) 2 R3 to the equation x
2+y

2 =
1?
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§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors u = hu1, u2, . . . , uni and v =
hv1, v2, . . . , vni is

u · v =

This product tells us about .

In particular, two vectors are orthogonal if and only if their dot product is .

Example 2. Are u = h1, 1, 4i and v = h�3,�1, 1i orthogonal?
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice”
way.

1.

2.

Definition 3. The cross product of two vectors u = hu1, u2, u3i and v = hv1, v2, v3i
in R3 is

u⇥ v =
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Example 4. Find h1, 2, 0i ⇥ h3,�1, 0i.
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Example 5. You try it! Find h2, 1, 0i ⇥ h1, 2, 1i.
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Some common [AJN] things to look out for.

[A] Accuracy

• simplify answer

• box answer

[J] Justification

• minus sign on j component

• show intermediate steps

[N] Notation

• use = sign for expressions that are equal

• vector notation vs. point notation



§12.3, 12.4 Page 9

A Geometric Interpretation of u⇥ v

The cross product u⇥ v is the vector

u⇥ v = (|u||v| sin ✓)n

where n is a unit vector which is normal to the plane spanned by u and v.

Since n is a unit vector, the magnitude of u ⇥ v is the area of the parallelogram
spanned by u and v.

|u⇥ v| = |u||v| sin ✓

Example 6. Find the area of the parallelogram determined by the points P , Q,
and R.

P (1, 1, 1), Q(2, 1, 3), R(3,�1, 1)
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§12.5 Lines & Planes

Lines in R2, a new perspective:

Example 7. Find a vector equation for the line that goes through the points P =
(1, 0, 2) and Q = (�2, 1, 1).
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Planes in R3

Conceptually: A plane is determined by either three points in R3 or by a single
point and a direction n, called the normal vector.

Algebraically: A plane in R3 has a linear equation (back to Linear Algebra! im-
posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)
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Example 8. Consider the planes y � z = �2 and x� y = 0. Show that the planes
intersect and find an equation for the line passing through the point P = (�8, 0, 2)
which is parallel to the line of intersection of the planes.



§12.6 Page 13

§12.6 Quadric Surfaces

Definition 9. A quadric surface in R3 is the set of points that solve a quadratic
equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to
examine their cross-sections.

Example 10. Use cross-sections to sketch and identify the quadric surface x =
z
2 + y

2.
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§13.1 Curves in Space & Their Tangents
The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R2 and R3 as well. We said that a function r : R ! R3

with r(t) = vt+ r0 produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number t and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function r whose graph is

C is called the curve C, and r is called a of

C.
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Example 11. Consider r1(t) = hcos(t), sin(t), ti and r2(t) = hcos(2t), sin(2t), 2ti,
each with domain [0, 2⇡]. What do you think the graph of each looks like? How are
they similar and how are they di↵erent?

Check your intuition

https://tinyurl.com/math2551-vvfns-hlx
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 12. Compute lim
t!e

ht2, 2, ln(t)i.

And with continuity:

Example 13. Determine where the function r(t) = ti� 1

t2 � 4
j+ sin(t)k is contin-

uous.
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And with derivatives:

Example 14. If r(t) = h2t� 1
2t

2 + 1, t� 1i, find r0(t).

Interpretation: If r(t) gives the position of an object at time t, then

• r0(t) gives

• |r0(t)| gives

• r00(t) gives

Let’s see this graphically

Example 15. Find an equation of the tangent line to r(t) = h2t� 1
2t

2 + 1, t� 1i at
time t = 2.

https://tinyurl.com/math2551-vvfnx-vel-accel
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And with integrals:

Example 16. Find
R 1
0 ht, e

2t
, sec2(t)i dt.

At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 17. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

v(t) = h�200 sin(2t), 200 cos(t), 400� 400

1 + t
i m/s.

If he also knows that he started at the point r(0) = h0, 0, 0i,
use calculus to reconstruct his flight path.
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§13.3 Arc length of curves

We have discussed motion in space using by equations like r(t) = hx(t), y(t), z(t)i.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time t is

r(t) = h2 cos(t), 2 sin(t)i,

where 0  t  2⇡.

a)Sketch the graph of r(t). What shape is this?

b)How far does the fly travel between t = 0 and t = ⇡?

c)What is the speed kv(t)k of the fly at time t?

d)Compute the integral

Z ⇡

0
kv(t)k dt. What do you notice?
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Definition 18. We say that the arc length of a smooth curve

r(t) = hx(t), y(t), z(t)i from to that is traced out ex-

actly once is

L =

Example 19. Set up an integral for the arc length of the curve r(t) = ti+ t
2j+ t

3k
from the point (1, 1, 1) to the point (2, 4, 8).
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Example 20. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = h6 sin(2t), 6 cos(2t), 5ti, 0  t  2⇡.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Example 21. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ti+ 2

3t
3/2k, 0  t  8.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t0 to an
arbitrary time t, which is given by the arc length function.

s(t) =

We can use this function to produce parameterizations of curves where the parameter
s measures distance along the curve: the points where s = 0 and s = 1 would be
exactly 1 unit of distance apart.
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Example 22. Find an arc length parameterization of the circle of radius 4 about
the origin in R2, r(t) = h4 cos(t), 4 sin(t)i, 0  t  2⇡.
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Example 23. You try it! Find (a) an arc length parameterization s(t) of the
curve C, the portion of the helix of radius 4 in R3 parameterized by r(t) =
h4 cos(t), 4 sin(t), 3ti, 0  t  ⇡/2, and (b) use s(t) to find L the length of C
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§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with
two vectors that orient the curve.

First, we need the unit tangent vector, denoted T:

• In terms of an arc-length parameter s:

• In terms of any parameter t:

This lets us define the curvature, (s) =



§13.4 Page 28

Example 24. In Example ?? we found an arc length parameterization of the circle
of radius 4 centered at (0, 0) in R2:

r(s) =
D
4 cos

⇣
s

4

⌘
, 4 sin

⇣
s

4

⌘E
, 0  s  8⇡.

Use this to find T(s) and (s).

Question: In which direction is T changing?

This is the direction of the principal unit normal, N(s) =
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We said last time that it is often hard to find arc length parameterizations, so what
do we do if we have a generic parameterization r(t)?

• T(t) =

• (t) = or

• N(t) =

Example 25. Find T,N, for the helix r(t) = h2 cos(t), 2 sin(t), t� 1i, t 2 R.
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Example 26. You try it! Find T,N, for the curve parametrized by

r(t) = (cos t+ t sin t)i+ (sin t� t cos t)j+ 3k, t 2 R.
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§14.1 Functions of Multiple Variables

Definition 27. A is a rule that as-

signs to each of real numbers (x, y) in a setD a

denoted by f(x, y).

f : D ! R, where D ✓ R2

Example 28. Three examples are

f(x, y) = x
2 + y

2
, g(x, y) = ln(x+ y), h(x, y) =

1p
x+ y

.

Example 29. Find the largest possible domains of f, g, and h.

Definition 30. If f is a function of two variables with domain D, then the graph
of f is the set of all points (x, y, z) in R3 such that z = f(x, y) and (x, y) is in D.

Here are the graphs of the three functions above.

https://tinyurl.com/math2551-f23-2var-graphs
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Example 31. Suppose a small hill has height h(x, y) = 4 � 1

4
x
2 � 1

4
y
2 m at each

point (x, y). How could we draw a picture that represents the hill in 2D?

In 3D, it looks like this.

https://tinyurl.com/math2551-2var-first-ex-graph
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Definition 32. The (also called ) of a function

f of two variables are the curves with equations , where k is a

constant (in the range of f). A plot of for various values of z is a

(or ).

Some common examples of these are:

•

•

•

Example 33. Create a contour diagram of f(x, y) = x
2 � y

2
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Definition 34. The of a surface are the curves of

of the surface with planes parallel to the

.

Example 35. Use the traces and contours of z = f(x, y) = 4 � 2x � y
2 to sketch

the portion of its graph in the first octant.

Let’s check our work: https://tinyurl.com/math2551-2var-graph

https://tinyurl.com/math2551-2var-graph
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Definition 36. A is a rule that
assigns to each of real numbers (x, y, z) in a set D a

denoted by f(x, y, z).

f : D ! R, where D ✓ R3

We can still think about the domain and range of these functions. Instead of level
curves, we get level surfaces.

Example 37. Describe the largest possible domain of the function

f(x, y, z) =
1

4� x2 � y2 � z2
.

Example 38. Describe the level surfaces of the function g(x, y, z) = 2x2 + y
2 + z

2.
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§14.2 Limits & Continuity

Definition 39. What is a limit of a function of two variables?

We won’t use this definition much: the big idea is that lim
(x,y)!(x0,y0)

f(x, y) = L if and

only if f(x, y) regardless of how we approach

the point (x0, y0).

Definition 40. A function f(x, y) is continuous at (x0, y0) if

1.

2.

3.

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous
functions results in another continuous function.
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Example 41. Evaluate lim
(x,y)!(2,0)

p
2x� y � 2

2x� y � 4
, if it exists.
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Example 42. You try it! Evaluate lim
(x,y)!(⇡2 ,0)

cos y + 1

y � sin x
, if it exists.
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Sometimes, life is harder in R2 and limits can fail to exist in ways that are very
di↵erent from what we’ve seen before.

Big Idea: Limits can behave di↵erently along di↵erent paths of approach

Example 43. Evaluate lim
(x,y)!(0,0)

x
2

x2 + y2
, if it exists. Here is its graph.

This idea is called the two-path test:

If we can find to (x0, y0) along

which takes on two di↵erent values, then

.

https://tinyurl.com/math2551-two-path-graph
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Example 44. Show that the limit

lim
(x,y)!(0,0)

x
2
y

x4 + y2

does not exist.
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Example 45. You try it! Show that the limit lim
(x,y)!(0,0)

x
4

x4 + y2
is dne by using the

two-path test.
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Example 46. [Challenge:] Show that the limit

lim
(x,y)!(0,0)

x
4
y

x4 + y2

does exist using the Squeeze Theorem.

Theorem 47 (Squeeze Theorem). If f(x, y) = g(x, y)h(x, y), where

lim(x,y)!(a,b) g(x, y) = 0 and |h(x, y)|  C for some constant C near (a, b), then

lim(x,y)!(a,b) f(x, y) = 0.
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§14.3: Partial Derivatives

Goal: Describe how a function of two (or three, later) variables is changing at a

point (a, b).

Example 48. Let’s go back to our example of the small hill that has height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2

meters at each point (x, y). If we are standing on the hill at the point with

(2, 1, 11/4), and walk due north (the positive y-direction), at what rate will our

height change? What if we walk due east (the positive x-direction)?

Let’s investigate graphically.

https://tinyurl.com/math2551-pdev-hill-ex
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Definition 49. If f is a function of two variables x and y, its

are the functions fx and fy defined by

fx(x, y) = lim
h!0

fy(x, y) = lim
h!0

Notations:

Interpretations:
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Example 50. Find fx(1, 2) and fy(1, 2) of the functions below.

a)f(x, y) =
p
5x� y

b)f(x, y) = tan(xy)
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Question: How would you define the second partial derivatives?

Example 51. Find fxx, fxy, fyx, and fyy of the function below.

f(x, y) =
p
5x� y
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What do you notice about fxy and fyx in the previous example?

Theorem 52 (Clairaut’s Theorem). Suppose f is defined on a disk D that contains

the point (a, b). If the functions f, fx, fy, fxy, fyx are all continuous on D, then

Example 53. You try it! What about functions of three variables? How many

partial derivatives should f(x, y, z) = 2xyz � z
2
y have? Compute them.
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Example 54. How many rates of change should the function f(s, t) =

2

4
s
2 + t

2s� t

st

3

5

have? Compute them.

So, we computed partial derivatives. How might we organize this information?

For any function f : Rn ! Rm having the form f(x1, . . . , xn) =

2

64
f1(x1, . . . , xn)

.

.

.

fm(x1, . . . , xn)

3

75,

we have inputs, output, and partial derivatives, which

we can use to form the total derivative.

This is a map from Rn ! Rm, denoted Df , and we can represent it

with an , with one column per input and one row per output.

It has the formula Dfij =
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Example 55. You try it! Find the total derivatives of each function:

a)f(x) = x
2 + 1

b)r(t) = hcos(t), sin(t), ti

c) f(x, y) =
p
5x� y

d)f(x, y, z) = 2xyz � z
2
y

e) f(s, t) = hs2 + t, 2s� t, sti

What does it mean? In di↵erential calculus, you learned that one in-

terpretation of the derivative is as a slope. Another interpretation is that the

derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by

3Blue1Brown.)

https://www.geogebra.org/m/rftwacsy
https://www.youtube.com/watch?v=CfW845LNObM


§14.3 Page 50

In particular, the (total) derivative of any function f : Rn ! Rm, evaluated at

a = (a1, . . . , an), is the linear function that best approximates f(x)� f(a) at a.

This leads to the familiar linear approximation formula for functions of one variable:

L(x) = f(a) + f
0(a)(x� a) ⇡ f(x), near x = a.

Definition 56. The linearization or linear approximation of a di↵erentiable

function f : Rn ! Rm at the point a = (a1, . . . , an) is

L(x) =

Example 57. Find the linearization of the function f(x, y) =
p
5x� y at the point

(1, 1). Use it to approximate f(1.1, 1.1).

Question: What do you notice about the equation of the linearization?
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We say f : Rn ! R is di↵erentiable at a if its linearization is a good approximation

of f near a.

lim
(x,y)!(a,b)

f(x, y)� L(x, y)

k(x, y)� (a, b)k = 0.

In particular, if f is a function f(x, y) of two variables, it is di↵erentiable at (a, b)

its graph has a unique tangent plane at (a, b, f(a, b)).

Example 58. Determine if f(x, y) =

(
1 xy = 0

0 xy 6= 0
is di↵erentiable at (0, 0).
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§14.4 The Chain Rule
Recall the Chain Rule from single variable calculus:

Similarly, the Chain Rule for functions of multiple variables says that if f : Rp !
Rm and g : Rn ! Rp are both di↵erentiable functions then

D(f(g(x))) = Df(g(x))Dg(x).

Example 59. Suppose we are walking on our hill with height h(x, y) = 4�1

4
x
2�1

4
y
2

along the curve r(t) = ht+1, 2� t
2i in the plane. How fast is our height changing at

time t = 1 if the positions are measured in meters and time is measured in minutes?

https://tinyurl.com/math2551-hill-chain-rule-ex
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Example 60. Suppose that W (s, t) = F (u(s, t), v(s, t)), where F, u, v are di↵eren-

tiable functions and we know the following information.

u(1, 0) = 2 v(1, 0) = 3

us(1, 0) = �2 vs(1, 0) = 5

ut(1, 0) = 6 vt(1, 0) = 4

Fu(2, 3) = �1 Fv(2, 3) = 10

Find Ws(1, 0) and Wt(1, 0).
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Application to Implicit Di↵erentiation: If F (x, y, z) = c is used to implicitly

define z as a function of x and y, then the chain rule says:

Example 61. Compute
@z

@x
and

@z

@y
for the sphere x

2 + y
2 + z

2 = 4.
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§14.5 Directional Derivatives & Gradient Vectors

Example 62. Recall that if z = f(x, y), then fx represents the rate of change of z

in the x-direction and fy represents the rate of change of z in the y-direction. What

about other directions?
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Let’s go back to our hill example again, h(x, y) = 4 � 1

4
x
2 � 1

4
y
2. How could we

figure out the rate of change of our height from the point (2, 1) if we move in the

direction h�1, 1i?

Definition 63. The of f : Rn ! R at the point p

in the direction of a unit vector u is

Duf(p) =

if this limit exists.

E.g. for our hill example above we have:

https://tinyurl.com/math2551-hill-dir-deriv-ex


§14.5 Page 57

Note that Dif = Djf = Dkf =

Definition 64. If f : Rn ! R, then the of f at p 2 Rn is the

vector function (or ) defined by

rf(p) =

Note: If f : Rn ! R is di↵erentiable at a point p, then f has a directional derivative

at p in the direction of any unit vector u and

Duf(p) =



§14.5 Page 58

Example 65. You try it! Find the gradient vector and the directional derivative of

each function at the given point p in the direction of the given vector u.

a)f(x, y) = ln(x2 + y
2),p = (�1, 1),u =

⌧
1p
5
,
�2p
5

�

b)g(x, y, z) = x
2 + 4xy2 + z

2, p = (1, 2, 1), u the unit vector in the direction of

i+ 2j� k
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Example 66. If h(x, y) = 4� 1

4
x
2� 1

4
y
2, the contour map is given below. Find and

draw rh on the diagram at the points (2, 0), (0, 4), and (�
p
2,�

p
2). At the point

(2, 0), compute Duh for the vectors u1 = i,u2 = j,u3 = h 1p
2
,

1p
2
i.

Note that the gradient vector rf is to the level curves of the

function .

Similarly, for f(x, y, z), rf(a, b, c) is
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Example 67. You try it! Sketch the curve x2+ y
2 = 4 together with (a) the vector

rf |P and (b) the tangent line at P (
p
2,
p
2). Be sure to label the tangent line with

the equation which defines it.

x

y
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§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F (x, y, z) = k. How can we find an equation

of the tangent plane of S at P (x0, y0, z0)?

�4 �2 0 2 4 �5

0

5
�40

�20

0

x
2 + y

2 + z = 10, P = (�1, 3, 0)

https://tinyurl.com/math2551-tangent-plane-1
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Example 68. Find the equation of the tangent plane at the point (�2, 1,�1) to

the surface given by

z = 4� x
2 � y

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the

tangent plane is

This should look familiar: it’s

https://tinyurl.com/math2551-tangent-plane-2
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Example 69. You try it! Consider the surface in R3 containing the point P and

defined by

x
2 + 2xy � y

2 + z
2 = 7, P (1,�1, 3).

Identity the function F (x, y, z) such that the surface is a level set of F . Then, find

rF and an equation for the plane tangent to the surface at P . Finally, find a

parametric equation for the line normal to the surface at P .
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§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said rf(a, b) points in the

direction of greatest change of f .

Back to the hill h(x, y) = 4� 1

4
x
2 � 1

4
y
2.

What should we expect to get if we compute rh(0, 0)? Why? What does the

tangent plane to z = h(x, y) at (0, 0, 4) look like?

https://tinyurl.com/S-14-7-hill


§14.7 Page 66

Definition 70. Let f(x, y) be defined on a region containing the point (a, b). We

say

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

In R3, another interesting thing can happen. Let’s look at z = x
2� y

2 (a hyperbolic

paraboloid!) near (0, 0).

This is called a

Notice that in all of these examples, we have a horizontal tangent plane at the point

in question, i.e.

Definition 71. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) = or where Df(a, b)

is called a of f .

https://tinyurl.com/math2551-saddle-point-ex
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Example 72. Find the critical points of the function

f(x, y) = x
3 + y

3 � 3xy.
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Example 73. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x, y) at (a, b) is

Hf(a, b) =

Theorem 74 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and

f has continuous second partial derivatives. Then we have:

• If det(Hf(a, b)) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum

• If det(Hf(a, b)) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum

• If det(Hf(a, b)) < 0, f has a saddle point at (a, b)

• If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if f : Rn ! R has a critical point at p then

• If all eigenvalues of Hf(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

• If all eigenvalues of Hf(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

• If some eigenvalues of Hf(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

• If all eigenvalues of Hf(p) are positive or zero, f may have either a local
minimum or neither at p.

• If all eigenvalues of Hf(p) are negative or zero, f may have either a local
maximum or neither at p.
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Example 75. Classify the critical points of f(x, y) = x
3 + y

3 � 3xy from Example

??.

https://tinyurl.com/math2551-critpt-ex-2
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Two Local Maxima, No Local Minimum: The function g(x, y) = �(x2� 1)2�
(x2y � x � 1)2 + 2 has two critical points, at (�1, 0) and (1, 2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have f(a, b) �
f(x, y) for all (x, y) in the domain of f . A global minimum is defined similarly.

Theorem 76. On a closed & bounded domain, any continuous function f(x, y)

attains a global minimum & maximum.

Closed:

Bounded:

https://tinyurl.com/math2551-2max-only-ex
https://tinyurl.com/math2551-2max-only-ex
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Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 77. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.
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Example 77. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

(Cont.)
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§14.8 Constrained Optimization, Lagrange
Multipliers

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a constraint, g(x, y) = c.

Example 78. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

Objective function:

Constraint equation:

https://tinyurl.com/2551-lagrange
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Example 78. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

(Cont.)

https://tinyurl.com/2551-lagrange
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Method of Lagrange Multipliers: To find the maximum and minimum values

attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points

where rf(x, y, z) = �rg(x, y, z) and g(x, y, z) = c and compute the value of f at

these points.

If we have more than one constraint g(x, y, z) = c1, h(x, y, z) = c2, then find all points

where rf(x, y, z) = �rg(x, y, z) + µrh(x, y, z) and g(x, y, z) = c1, h(x, y, z) = c2.

Example 79. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.
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Example 79. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.

(Cont.)
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§15.1 Double Integrals, Iterated Integrals, Change
of Order

Recall: Riemann sum and the definite integral from single-variable calculus.
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Double Integrals
Volumes and Double integrals Let R be the closed rectangle defined below:

R = [a, b]⇥ [c, d] = {(x, y) 2 R2|a  x  b, c  y  d}

Let f(x, y) be a function defined on R such that f(x, y) � 0. Let S be the solid

that lies above R and under the graph f .

Question: How can we estimate the volume of S?
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Definition 80. The of f(x, y) over a rectangle R is

ZZ

R
f(x, y) dA = lim

|P |!0

nX

k=1

f(xk, yk)�Ak

if this limit exists.

•

•
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Question: How can we compute a double integral?

Answer:

Let f(x, y) = 2xy and lets integrate over the rectangle R = [1, 3]⇥ [0, 4].

We want to compute
R 3
1

R 4
0 f(x, y) dy dx, but lets consider the slice at x = 2.

What does
R 4
0 f(2, y) dy represent here?
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In general, if f(x, y) is integrable over R = [a, b]⇥[c, d], then
R d
c f(2, y) dy represents:

What about
R d
c f(x, y)dy?

Let A(x) =
R d
c f(x, y)dy. Then,

=

Z b

a
A(x)dx =

This is called an .

Example 81. Evaluate

Z 2

1

Z 4

3
6x2y dy dx.

Theorem 82 (Fubini’s Theorem). If f is continuous on the rectangle R = [a, b] ⇥
[c, d], then

More generally, this is true if we assume that f is bounded on R, f is discontinuous

only on a finite number of smooth curves, and the iterated integrals exist.
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Example 83. You try it! Integrate:

a)

Z 2

0

Z 1

�1
x� y dy dx easy

b)

Z 1

0

Z 1

0

y

1 + xy
dx dy medium

c)

Z 4

1

Z e

1

ln x

xy
dx dy hard!
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Example 84. Compute

ZZ

R
xe

ee
y

dA, where R is the rectangle [�1, 1]⇥ [0, 4].

Hint: Fubini’s Theorem.
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§15.2 Double Integrals on General Regions

Question: What if the region R we wish to integrate over is not a rectangle?

Answer: Repeat same procedure - it will work if the boundary of R is smooth and

f is continuous.
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Example 85. Compute the volume of the solid whose base is the triangle with

vertices (0, 0), (0, 1), (1, 0) in the xy-plane and whose top is z = 2� x� y.

Vertically simple:

Horizontally simple:
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Example 86. Write the two iterated integrals for
RR

R 1 dA for the region R which

is bounded by y =
p
x, y = 0, and x = 9.

Example 87. Set up an iterated integral to evaluate the double integral
RR

R 6x2y dA, where R is the region bounded by x = 0, x = 1, y = 2, and y = x.
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Example 88. You try it! Write the two iterated integrals for
RR

R 1 dA for the

region R which is bounded by x = 0, y = 8, and y = x
3.
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Example 89. Sketch the region of integration for the integral

Z 1

0

Z 4

4x
f(x, y) dy dx.

Then write an equivalent iterated integral in the order dx dy.
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§15.3 Area & Average Value

Two other applications of double integrals are computing the area of a region in the

plane and finding the average value of a function over some domain.

Area: If R is a region bounded by smooth curves, then

Area(R) =

Example 90. Find the area of the region R bounded by y =
p
x, y = 0, and x = 9.

Average Value: The average value of f(x, y) on a region R contained in R2 is

favg =
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Example 91. Find the average temperature on the region R in the previous example

if the temperature at each point is given by T (x, y) = 4xy2.
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Example 92. You try it! Find the average value of the function f(x, y) = x
2 + y

2

on the region R = [0, 2]⇥ [0, 2].
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Example 93. Find the average value of the function f(x, y) = sin(x+ y) on (a) the

region R1 = [0, ⇡]⇥ [0, ⇡], and (b) the region R2 = [0, ⇡]⇥ [0, ⇡/2].

Hint: choose your order of integration carefully!
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Example 94. You try it! Which value is larger for the function f(x, y) = xy: the

average value of f over the square R1 = [0, 1]⇥ [0, 1], or the average value of f over

R2 the quarter circle x2+y
2  1 in Quadrant I? Verify your guess with calculations.



§15.4 Page 95

§15.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates

x

y Cartesian coordinates: Give the distances in

and directions from

Polar coordinates:

• r = distance from to

• ✓ = angle between the ray and the

positive

We can use trigonometry to go back and forth.

Polar to Cartesian:

x = r cos(✓) y = r sin(✓)

Cartesian to Polar:

r
2 = x

2 + y
2 tan(✓) =

y

x
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Example 95. a)Find a set of polar coordinates for the point (x, y) = (1, 1).

b)Graph the set of points (x, y) that satisfy the equation r = 2 and the set of points

that satisfy the equation ✓ = ⇡/4 in the xy-plane.

c)Write the function f(x, y) =
p

x2 + y2 in polar coordinates.

d) You try it! Write a Cartesian equation describing the points that satisfy r =

2 sin(✓).

Goal: Given a regionR in the xy-plane described in polar coordinates and a function

f(r, ✓) on R, compute
RR

R f(r, ✓) dA.

Example 96. Compute the area of the disk of radius 5 centered at (0, 0).

Remember: In polar coordinates, the area form dA =
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Goal: Given a regionR in the xy-plane described in polar coordinates and a function

f(r, ✓) on R, compute
RR

R f(r, ✓) dA.

Example 97. Compute the area of the disk of radius 5 centered at (0, 0).

Cont.

Remember: In polar coordinates, the area form dA =
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Example 98. Compute
RR

D e
�(x2+y2)

dA on the washer-shaped region 1  x
2+y

2 
4.

Example 99. Compute the area of the smaller region bounded by the circle x
2 +

(y � 1)2 = 1 and the line y = x.
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Example 100. You try it! Write an integral for the volume under z = x on the

region between the cardioid r = 1 + cos(✓) and the circle r = 1, where x � 0.

x

y

r = 1 + cos(✓)
r = 1
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Example 101. Convert the integral in polar coordinates to an equivalent integral

in cartesian coordinates, but do not evaluate. Then, evaluate the original integral

to find the value of
RR

R f(x, y) dA.

Z ⇡/2

⇡/6

Z csc ✓

1
r
2 cos ✓ dr d✓
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Tips and tricks

For horizontal lines such as x = 2:

For vertical lines such as y = 1 (e.g., Example ??):

For o↵-set circles such as x2 + (y � 1)2 = 1 (e.g., Example ??):
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Example 102. You try it! Find the area of the region R which is the smaller part

bounded between the circle x
2 + y

2 = 4 and the line x = 1.
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§15.5-15.6 Triple Integrals & Applications

Idea: Suppose D is a solid region in R3. If f(x, y, z) is a function on D, e.g. mass

density, electric charge density, temperature, etc., we can approximate the total

value of f on D with a Riemann sum.

nX

k=1

f(xk, yk, zk)�Vk,

by breaking D into small rectangular prisms �Vk.
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Taking the limit gives a

:

ZZZ

D
f(x, y, z) dV

Important special case:

ZZZ

D
1 dV =

Again, we have Fubini’s theorem to evaluate these triple integrals as iterated inte-

grals.

Other important spatial applications:
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Example 103. 1. How to do the computation:

Compute

Z 1

0

Z 2�x

0

Z 2�x�y

0
dz dy dx.

2. What does it mean: What shape is this the volume of?

3. How to reorder the di↵erentials: Write an equivalent iterated integral in

the order dy dz dx.
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Example 104. You try it! Evaluate the triple integrals. What is the shape of the

region of integration D in each case?

(a)

Z e

1

Z e2

1

Z e3

1

1

xyz
dx dy dz

(b)

Z ⇡/3

0

Z 1

0

Z 3

�2
y sin z dx dy dz
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We will think about converting triple integrals to iterated integrals in terms of the

of D on one of the coordinate planes.

Case 1: z-simple) region. If R is the projection ofD on the xy-plane andD is bounded

above and below by the surfaces z = h(x, y) and z = g(x, y), then

ZZZ

D
f(x, y, z) dV =

ZZ

R

 Z h(x,y)

g(x,y)
f(x, y, z) dz

!
dy dx

Case 2: y-simple) region. If R is the projection ofD on the xz-plane andD is bounded

right and left by the surfaces y = h(x, z) and y = g(x, z), then

ZZZ

D
f(x, y, z) dV =

ZZ

R

 Z h(x,z)

g(x,z)
f(x, y, z) dy

!
dz dx

Case 3: x-simple) region. If R is the projection ofD on the yz-plane andD is bounded

front and back by the surfaces x = h(y, z) and x = g(y, z), then

ZZZ

D
f(x, y, z) dV =

ZZ

R

 Z h(y,z)

g(y,z)
f(x, y, z) dx

!
dz dy
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Example 105. Write an integral for the mass of the solid D in the first octant with

2y  z  3 � x
2 � y

2 with density �(x, y, z) = x
2
y + 0.1 by treating the solid as a)

z-simple and b) x-simple. Is the solid also y-simple?

https://tinyurl.com/math2551-3int-order-ex
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Example ?? (cont.)
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Rules for Triple Integrals for the Sketching Impaired (credit to Wm.
Douglas Withers)

Rule 1: Choose a variable appearing exactly twice for the next integral.

Rule 2: After setting up an integral, cross out any constraints involving
the variable just used.

Rule 3: Create a new constraint by setting the lower limit of the preceding
integral less than the upper limit.

Rule 4: A square variable counts twice.

Rule 5: The region of integration of the next step must lie within the
domain of any function used in previous limits.

Rule 6: If you do not know which is the upper limit and which is the lower,
take a guess - but be prepared to backtrack.

Rule 7: When forced to use a variable appearing more than twice, choose
the most restrictive pair of constraints.

Rule 8: When unable to determine the most restrictive pair of constraints,
set up the integral using each possible most restrictive pair and
add the results.

Example 106. You try it! Find the volume of the region in the first quadrant

bounded by the coordinate planes and the planes x+ z = 1, y + 2z = 2.
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Example 106. You try it! Find the volume of the region in the first quadrant

bounded by the coordinate planes and the planes x+ z = 1, y + 2z = 2.
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Example 107. Set up an integral for the volume of the region D defined by

x+ y
2  8, y

2 + 2z2  x, y � 0
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Example 108. Set up a triple iterated integral for the triple integral of f(x, y, z) =

x
3
y over the region D bounded by

x
2 + y

2 = 1, z = 0, x+ y + z = 2.
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§15.7 Triple Integrals in Cylindrical & Spherical
Coordinates

Cylindrical Coordinate System

Cylindrical to Cartesian:

x = r cos(✓), y = r sin(✓), z = z

Cartesian to Cylindrical:

r
2 = x

2 + y
2
, tan(✓) =

y

x
, z = z

Conventions:

Example 109. a)Find cylindrical coor-
dinates for the point with Cartesian co-
ordinates (�1,

p
3, 3).

b)Find Cartesian coordinates for the
point with cylindrical coordinates
(2, 5⇡/4, 1).



§15.7 Page 115

Example 110. In xyz-space sketch the cylindrical box

B = {(r, ✓, z) | 1  r  2, ⇡/6  ✓  ⇡/3, 0  z  2}.

Triple Integrals in Cylindrical Coordinates

We have dV =

Example 111. Set up a iterated integral in cylindrical coordinates for the volume

of the region D lying below z = x+2, above the xy-plane, and between the cylinders

x
2 + y

2 = 1 and x
2 + y

2 = 4.
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Example 112. You try it! Suppose the density of the cone defined by r = 1 � z

with z � 0 is given by �(r, ✓, z) = z. Set up an iterated integral in cylindrical

coordinates that gives the mass of the cone.
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Spherical Coordinate System

Spherical to Cartesian:

x = ⇢ sin(') cos(✓)

y = ⇢ sin(') sin(✓)

z = ⇢ cos(')

Cartesian to Spherical:

⇢
2 = x

2 + y
2 + z

2

tan(✓) =
y

x

tan(') =

p
x2 + y2

z

Conventions:

Example 113. a)Find spherical coordi-
nates for the point with Cartesian co-
ordinates (�2, 2,

p
8).

b)Find Cartesian coordinates for the
point with spherical coordinates
(2, ⇡/2, ⇡/3).
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Example 114. In xyz-space sketch the spherical box

B = {(⇢,', ✓) | 1  ⇢  2, 0  '  ⇡/4, ⇡/6  ✓  ⇡/3}.

https://tinyurl.com/math2551-spherical-box
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Triple Integrals in Spherical Coordinates

We have dV =

Example 115. Write an iterated integral for the volume of the “ice cream cone” D

bounded above by the sphere x2+y
2+z

2 = 1 and below by the cone z =
p
3
p

x2 + y2.
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Example 116. You try it! Write an iterated integral for the volume of the region

that lies inside the sphere x
2 + y

2 + z
2 = 2 and outside the cylinder x2 + y

2 = 1.
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§15.8 Change of Variables in Multiple Integrals

Thinking about single variable calculus: Compute

Z p
3

1

1p
4� x2

dx



§15.8 Page 122

Theorem 117 (Substitution Theorem). Suppose T(u, v) is a one-to-one, di↵eren-

tiable transformation that maps the region G in the uv-plane to the region R in the

xy-plane. Then

ZZ

R
f(x, y) dx dy =

ZZ

G
f(T(u, v))| det(DT(u, v))| du dv.

Example 118. Evaluate

Z 4

0

Z y/2+1

y/2

2x� y

2
dx dy via the transformation x = u+v,

y = 2v.

1. Find T:
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2. Find G and sketch:

3. Find Jacobian:

4. Convert and use theorem:
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Example 119. a) You try it! Find the Jacobian of the transformation

x = u+ (1/2)v, y = v.

b) You try it! Which transformation(s) seem suitable for the integral

Z 2

0

Z (y+4)/2

y/2
y
3(2x� y)e(2x�y)2

dx dy?

i) u = x, v = y

ii) u =
p
x2 + y2, v = arctan(y/x)

iii)u = 2x� y, v = y
3

iv)u = y, v = 2x� y

v) u = 2x� y, v = y

vi)u = e
(2x�y)2, v = y

3
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Theorem 120 (Derivative of Inverse Coordinate Transformation). If T(u, v) is a

one-to-one di↵erentiable transformation that maps a region G in the uv-plane to a

region R in the xy-plane and T (u0, v0) = (x0, y0), then we have

| det(DT(u0, v0))| =
1

| det(DT�1(x0, y0))|
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Example 121. Let’s evaluate

ZZ

R

y(x+ y)

x3
where R is the region in the xy-plane

bounded by y = x, y = 3x, y = 1 � x, and y = 2 � x. Consider the coordinate

transformation u = x+ y, v = y/x.

1. Find the rectangle G in the uv plane that is mapped to R

2. Evaluate f(T(u, v))| det(DT(u, v))| in terms of u and v without directly

solving for T using the theorem above
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3. Use the Substitution Theorem to compute the integral.
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§16.1 Line Integrals of Scalar Functions

Chapter 16: Vector Calculus

Goals:

• Extend integrals to objects living in higher-

dimensional space

• Extend the in new ways

We will use tools from everything we have covered so far to do this: parameteriza-

tions, derivatives and gradients, and multiple integrals.
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Example 122. Suppose we build a wall whose base is the straight line from (0, 0)

to (1, 1) in the xy-plane and whose height at each point is given by h(x, y) = 2x+y
2

meters. What is the area of this wall?

https://tinyurl.com/2551-wall-line-int
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Definition 123. The line integral of a scalar function f(x, y) over a curve C in

R2 is
Z

C
f(x, y) ds =

What things can we compute with this?

• If f = 1:

• If f = � is a density function:

• If f is a height:
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Strategy for computing line integrals:

1. Parameterize the curve C with some r(t) for a  t  b

2. Compute ds = kr0(t)k dt

3. Substitute:
R
C f(x, y, z) ds =

R b
a f(r(t))kr

0(t)k dt

4. Integrate

Example 124. You try it! Compute
R
C 2x + y

2
ds along the curve C given by

r(t) = 10ti+ 10tj for 0  t  1
10 .
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Example 125. Compute
R
C 2x+ y

2
ds along the curve C pictured below.
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Example 126. You try it! Let C be a curve parameterized by r(t) from a  t  b.

Select all of the true statements below.

a)r(t+ 4) for a  t  b is also a parameterization
of C with the same orientation

b)r(2t) for a/2  t  b/2 is also a parameteriza-
tion of C with the same orientation

c) r(�t) for a  t  b is also a parameterization of
C with the opposite orientation

d)r(�t) for �b  t  �a is also a parameteriza-
tion of C with the opposite orientation

e) r(b� t) for 0  t  b� a is also a parameteriza-
tion of C with the opposite orientation
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Example 127. Find a parameterization of the curve C that consists of the portion

of the curve y = x
2 + 1 from (2, 5) to (�1, 2) and use it to write the integral

R
C x

2 + y
2
ds as an integral with respect to your parameter.
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§16.2 Vector Fields & Vector Line Integrals

Vector Fields:

Definition 128. A vector field is a function F : Rn ! Rn which associates a vector

to every point in its domain.

Examples:
•

•

•

•

•

Graphically: For each point (a, b)
in the domain of F, draw the
vector F(a, b) with its base at
(a, b).

Tools: CalcPlot3d
Field Play

https://c3d.libretexts.org/CalcPlot3D/index.html
https://anvaka.github.io/fieldplay/?cx=0.001200000000000312&cy=0&w=8.542200000000001&h=8.542200000000001&dt=0.01&fo=0.998&dp=0.009&cm=1
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Idea: In many physical processes, we care about the total sum of the strength of

that part of a field that lies either in the direction of a curve or perpendicular to

that curve.

1. The by a field F on an object moving along a curve

C is given by

Example 129. Work Done by a Field. Suppose we have a force field F(x, y) =

hx, yi N. Find the work done by F on a moving object from (0, 3) to (3, 0) in a

straight line, where x, y are measured in meters.
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1. The along a curve C of a velocity field F for a fluid

in motion is given by

When C is , this is called . C is called

if it does not intersect itself.

Example 130. Flow of a Velocity Field. Find the circulation of the velocity

field F(x, y) = h�y, xi cm/s around the unit circle, parameterized counterclockwise.
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Example 131. You try it! What is the circulation of F(x, y) = hx, yi around the

unit circle, parameterized counterclockwise?

Strategy for computing tangential component line integrals

e.g. work, flow, circulation integrals

1. Find a parameterization r(t), a  t  b for the curve C.

2. Compute r0(t).

3. Substitute:
R
C F ·T ds =

R
C F · dr =

R b
a F(r(t)) · r

0(t) dt

4. Integrate
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Idea: across a plane curve of a 2D-vector field measures the flow of

the field across that curve (instead of along it).

We compute this with the integral

Z

C
F · n ds.

The sign of the flux integral tells us whether the net flow of the field across the curve

is in the direction of or in the opposite direction.

We can choose n to be either of

Strategy for computing normal component line integrals

e.g. flux integrals

1. Find a parameterization r(t), a  t  b for the curve C.

2. Compute x
0(t) and y

0(t) and determine which normal to work with.

3. Substitute:
R
C F · n ds = ±

R b
a F(r(t)) · hy

0(t),�x
0(t)i dt (sign based on choice

of normal)

4. Integrate
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Example 132. Flux of a Velocity Field. Compute the flux of the velocity field

v = h3+ 2y� y
2
/3, 0i cm/s across the quarter of the ellipse

x
2

9
+

y
2

36
= 1 in the first

quadrant, oriented away from the origin.
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§16.3 Conservative Vector Fields & Fundamental
Theorem

Definition 133. A vector field F is path independent on an open region D if

for all paths C in the region that have the same

endpoints.

When F is path independent, we can use the simplest path from point A to point

B to compute a line integral, and will often denote the line integral with points as

bounds, e.g.
Z (3,1,1)

(0,1,2)
F ·T ds or

Z (c,d)

(a,b)
F · dr.

Example 134. If C is any closed path and F is path independent on a region

containing C, then
Z

C
F · dr =
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Question: Given F, how do we tell if it is path independent on a particular region?

For example, is F(x, y) = hx, yi a path independent vector field on its domain?

Example 135. You try it! Last time, we saw that if C is the unit circle about

the origin, oriented counterclockwise, then
R
Ch�y, xi · dr = 2⇡. From this, we can

conclude:
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A di↵erent idea: Suppose F is a gradient vector field, i.e. F = rf for some

function of multiple variables f . f is called a for F. In

this case we also say that F is conservative.

Is F(x, y) = hx, yi conservative?

Theorem 136 (Fundamental Theorem of Line Integrals). If C is a smooth curve

from the point A to the point B in the domain of a function f with continuous

gradient on C, then
Z

C
rf ·T ds = f(B)� f(A)
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Example 137. Compute
R
Chx, yi · dr for the curve C shown below from (�1, 1) to

(3, 2).
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It follows that every conservative field is path independent.

In fact, by carefully constructing a potential function, we can show the converse is

also true:

This leads to a better way to test for path-independence and a way to apply the

FToLI.

Curl Test for Conservative Fields: Let F = P i+Qj+Rk be a vector field defined

on a simply-connected region. If curlF = hRy �Qz, Pz �Rx, Qx �Pyi = h0, 0, 0i,
then F is conservative.

• If F is a 2-d vector field, curlF =

• This is also called the mixed-partials test, because
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Example 138. Evaluate
R
C(10x

4 � 2xy3) dx� 3x2y2 dy where C is the part of the

curve x
5 � 5x2y2 � 7x2 = 0 from (3,�2) to (3, 2).
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§16.4 Divergence, Curl, Green’s Theorem

Useful notation: r =

⌧
@

@x
,
@

@y
,
@

@z

�

So if f(x, y, z) is a function of three variables, rf =

⌧
@

@x
(f),

@

@y
(f),

@

@z
(f)

�

If F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k is a vector field:

• r · F =

• r⇥ F =
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How do we measure the change of a vector field?

1. Curl (in R3)

• Tells us

• Measures

• Is a

• Direction gives

• Magnitude gives

• curlF =

• If F = P i+Qj: we use r⇥ F = r⇥ hP,Q, 0i

2. Divergence (in any Rn)

• Tells us

• Measures

• Is a

• divF =
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Example 139. Let F(x, y) = hx, yi. Based on the visualization of this vector field

below, what can we say about the sign (+,-,0) of the divergence and scalar curl of

this vector field? Verify by computing the divergence and scalar curl.

Example 140. You try it! Let F(x, y) = h�y, xi. Based on the visualization of

this vector field below, what can we say about the sign (+,-,0) of the divergence and

scalar curl of this vector field? Verify by computing the divergence and scalar curl.
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Question: How is this useful?

Answer: We can relate inside a re-

gion to the behavior of the vector field on the boundary of the region.

Theorem 141 (Green’s Theorem). Suppose C is a piecewise smooth, simple, closed

curve enclosing on its left a region R in the plane with outward oriented unit normal

n. If F = hP,Qi has continuous partial derivatives around R, then

a)Circulation form:

Z

C
F ·T ds =

Z

C
P dx+Q dy =

ZZ

R
(r⇥ F) · k dA =

ZZ

R
Qx � Py dA

b)Flux form:

Z

C
F · n ds =

Z

C
P dy �Q dx =

ZZ

R
(r · F) dA =

ZZ

R
Px +Qy dA
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Example 142. Evaluate the line integral
R
C F · T ds for the vector field F =

h�y
2
, xyi where C is the boundary of the square bounded by x = 0, x = 1, y = 0,

and y = 1 oriented counterclockwise.

Example 143. Compute the flux out of the region R which is the portion of the

annulus between the circles of radius 1 and 3 in the first octant for the vector field

F = h13x
3
,
1
3y

3i.
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Example 144. Let R be the region bounded by the curve r(t) = hsin(2t), sin(t)i for
0  t  ⇡. Find the area of R, using Green’s Theorem applied to the vector field

F = 1
2hx, yi.

Note: This is the idea behind the operation of the measuring instrument known as

a planimeter.

https://en.wikipedia.org/wiki/Planimeter
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§16.5, 16.6 Surfaces & Surface Integrals

Di↵erent ways to think about curves and surfaces:

Curves Surfaces
Explicit: y = f(x) z = f(x, y)

Implicit: F (x, y) = 0 F (x, y, z) = 0

Parametric Form: r(t) = hx(t), y(t)i
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Example 145. Give parameteric representations for the surfaces below.

a)x = y
2 + 1

2z
2 � 2

b)The portion of the surface x = y
2 + 1

2z
2 � 2 which lies behind the yz-plane.

c) x2 + y
2 + z

2 = 9

d)x2 + y
2 = 25
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What can we do with this?

If our parameterization is smooth (ru, rv not parallel in the domain), then:

• ru ⇥ rv is

• A rectangle of size �u⇥�v in the uv-domain is mapped to a rectangle of size

on the surface in R3.

• Thus, Area(S) =

Example 146. You try it! Find the area of the portion of the cylinder x2+y
2 = 25

between z = 0 and z = 1.
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Example 147. Suppose the density of a thin plate S in the shape of the portion of

the plane x+ y + z = 1 in the first octant is �(x, y, z) = 6xy. Find the mass of the

plate.
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§16.6, 16.7 Flux Surface Integrals, Stokes’
Theorem

Goal: If F is a vector field in R3, find the total flux of F through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is

in the direction of

If r(u, v) is a smooth parameterization of S with domain R, we have

flux of F through S =

ZZ

S
(F · n) d� =

ZZ

R
F(r(u, v)) · (ru ⇥ rv) dA.
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Example 148. Find the flux of F = hx, y, zi through the upper hemisphere of

x
2 + y

2 + z
2 = 4, oriented away from the origin.
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Example 149. You try it! Suppose S is a smooth surface in R3 and F is a vector

field in R3. True or False: If
RR

S F · n d� > 0, then the angle between F and n is

acute at all points on S.

Example 150. You try it! Based on the plot of the vector field F and the surface S

below, oriented in the positive y-direction, is the flux integral
RR

S F · n d� positive,

negative, or zero?

Recall: If F = P i+Qj+Rk is a vector field, we defined its:

1. divergence: r · F = Px +Qy +Rz

2. curl: r⇥ F =

��������

i j k
@

@x

@

@y

@

@z

P Q R

��������
= hRy �Qz, Pz �Rx, Qx � Pyi
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Example 151. You try it! Suppose F = P i + Qj + Rk is a vector field in R3

with continuous partial derivatives. Compute the divergence of the curl of F, i.e.

r · (r⇥ F).

Theorem 152 (Stokes’ Theorem). Let S be a smooth oriented surface and C be

its compatibly oriented boundary. Let F be a vector field with continuous partial

derivatives. Then ZZ

S
(r⇥ F) · n d� =

Z

C
F ·T ds.

• If S is a region R in the xy-plane, then we get:

• An oriented surface is one where

• S and C are oriented compatibly if:
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§16.7 Stokes’ Theorem

Theorem 153 (Stokes’ Theorem). Let S be a smooth oriented surface and C be

its compatibly oriented boundary. Let F be a vector field with continuous partial

derivatives. Then ZZ

S
(r⇥ F) · n d� =

Z

C
F ·T ds.
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Example 154 (DD). Let F = h�y, x+(z�1)xx sin(x), x2+y
2i. Find

RR
S(r⇥F)·n d�

over the surface S which is the part of the sphere x
2 + y

2 + z
2 = 2 above z = 1,

oriented away from the origin.
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Question: What can we say if two di↵erent surfaces S1 and S2 have the same

oriented boundary C?

Example 155. Suppose curlF = hyyy sin(z2), (y� 1)ex
xx

+2,�ze
xxxi. Compute the

net flux of the curl of F over the surface pictured below, which is oriented outward

and whose boundary curve is a unit circle centered on the y-axis in the plane y = 1.
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§16.8 Divergence Theorem

Theorem 156 (Divergence Theorem). Let S be a closed surface oriented outward,

D be the volume inside S, and F be a vector field with continuous partial derivatives.

Then ZZ

S
F · n d� =

ZZZ

D
r · F dV.

Example 157. Let F = hy1234esin(yz), y�x
zx
, z

2�zi and S be the surface consisting

of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3,

together with top and bottom disks, oriented outward. Find the flux of F through

S.



Final Exam Review Page 165

Final Exam Review

Questions/Topics?
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Example 158. Evaluate the integral
R
C y

2
dx+x

2
dy where C is the circle x2+y

2 =

4.
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Example 159. Find the outward flux of F = 2xyi+2yzj+2xzk across the boundary

of the cube cut from the first octant by the planes x = 1, y = 1, z = 1.
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Example 160. Find the work done by F =
xi+ yj

(x2 + y2)3/2
on an object moving along

the plane curve r(t) = het cos(t), et sin(t)i from the point (1, 0) to the point (e2⇡, 0).
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Example 161. Find the flux of the field F = h2xy + x, xy � yi outward across the

boundary of the square bounded by x = 0, x = 1, y = 0, x = 1.
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Example 162. Find the flux of F = xzi + yzj + k across the upper cap cut from

the sphere x
2 + y

2 + z
2 = 25 by the plane z = 3, oriented away from the xy-plane.
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