Welcome Page 1

MATH 2550 G/J w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today:

Sections 12.1, 12.4, 12.5

- Set classroom norms
- Describe the big-picture goals of the class
- Review \mathbb{R}^3 and the dot product
- Introduce the cross product and its properties

Class Values/Norms:

- Mistakes are a learning opportunity
- Mathematics is collaborative
- Make sure everyone is included
- Criticize ideas, not people
- Be respectful of everyone

•

Welcome Page 2

Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

Differential Calculus

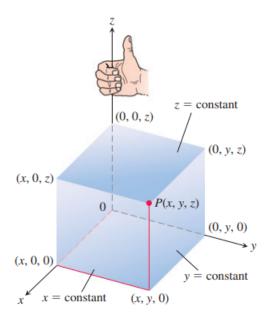
Integral Calculus

Before: we studied single-variable functions $f: \mathbb{R} \to \mathbb{R}$ like $f(x) = 2x^2 - 6$.

Now: we will study **multi-variable functions** $f: \mathbb{R}^n \to \mathbb{R}^m$: each of these functions is a rule that assigns one output vector with m entries to each input vector with n entries.

§12.1 Page 3

§12.1: Three-Dimensional Coordinate Systems



Question: What shape is the set of solutions $(x, y, z) \in \mathbb{R}^3$ to the equation $x^2 + y^2 = 1$?

§12.3, 12.4: Dot & Cross Products

Definition 1. The **dot product** of two vectors $\mathbf{u} = \langle u_1, u_2, \dots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \dots, v_n \rangle$ is

 $\mathbf{u} \cdot \mathbf{v} =$

This product tells us about _____

In particular, two vectors are **orthogonal** if and only if their dot product is _____.

Example 2. Are $\mathbf{u} = \langle 1, 1, 4 \rangle$ and $\mathbf{v} = \langle -3, -1, 1 \rangle$ orthogonal?

Goal: Given two vectors, produce a vector orthogonal to both of them in a "nice" way.

1.

2.

Definition 3. The **cross product** of two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 is

 $\mathbf{v} = \mathbf{v}$

Example 4. Find $\langle 1, 2, 0 \rangle \times \langle 3, -1, 0 \rangle$.

Example 5. *You try it!* Find $(2,1,0) \times (1,2,1)$.

Some common [AJN] things to look out for.

[A] Accuracy

- simplify answer
- box answer

[J] Justification

- \bullet minus sign on \mathbf{j} component
- show intermediate steps

[N] Notation

- use = sign for expressions that are equal
- $\bullet\,$ vector notation vs. point notation

A Geometric Interpretation of $\mathbf{u} \times \mathbf{v}$

The cross product $\mathbf{u} \times \mathbf{v}$ is the vector

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta)\mathbf{n}$$

where \mathbf{n} is a unit vector which is normal to the plane spanned by \mathbf{u} and \mathbf{v} .

Since \mathbf{n} is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} .

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta$$

Example 6. Find the area of the parallelogram determined by the points P, Q, and R.

$$P(1,1,1), Q(2,1,3), R(3,-1,1)$$