$\S12.5$ Lines & Planes

Lines in \mathbb{R}^2 , a new perspective:

Example 7. Find a vector equation for the line that goes through the points P = (1,0,2) and Q = (-2,1,1).

§12.5 Page 11

Planes in \mathbb{R}^3

Conceptually: A plane is determined by either three points in \mathbb{R}^3 or by a single point and a direction \mathbf{n} , called the *normal vector*.

Algebraically: A plane in \mathbb{R}^3 has a *linear* equation (back to Linear Algebra! imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

§12.5 Page 12

Example 8. Consider the planes y - z = -2 and x - y = 0. Show that the planes intersect and find an equation for the line passing through the point P = (-8, 0, 2) which is parallel to the line of intersection of the planes.

§12.5 Page 13

Example 9. You try it! Find the plane containing the lines parameterized by

$$\ell_1(t) = \langle 1, 1, 1 \rangle + t \langle 2, 1, 0 \rangle, \qquad -\infty < t < \infty$$

$$\ell_2(s) = \langle 0, -1, 0 \rangle + s \langle 1, 2, 1 \rangle, \qquad -\infty < s < \infty$$

Give your answer in the form Ax + By + Cz = D or $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$.

§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other onedimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is C is called _______ of

§13.1 Page 15

Example 10. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?

§13.2 Page 16

§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with <u>limits</u>:

Example 11. Compute $\lim_{t\to e} \langle t^2, 2, \ln(t) \rangle$.

And with continuity:

Example 12. Determine where the function $\mathbf{r}(t) = t\mathbf{i} - \frac{1}{t^2 - 4}\mathbf{j} + \sin(t)\mathbf{k}$ is continuous.

And with derivatives:

Example 13. If $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$, find $\mathbf{r}'(t)$.

Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t, then

- $\mathbf{r}'(t)$ gives _____
- $|\mathbf{r}'(t)|$ gives _____
- $\mathbf{r}''(t)$ gives _____

Let's see this graphically

Example 14. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.

§13.2 Page 18

Example 14. (cont.) Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.

§13.2 Page 19

And with integrals:

Example 15. Find $\int_0^1 \langle t, e^{2t}, \sec^2(t) \rangle dt$.

At this point we can solve initial-value problems like those we did in single-variable calculus:

Example 16. Wallace is testing a rocket to fly to the moon, but he forgot to include instruments to record his position during the flight. He knows that his velocity during the flight was given by

$$\mathbf{v}(t) = \langle -200\sin(2t), 200\cos(t), 400 - \frac{400}{1+t} \rangle \ m/s.$$

If he also knows that he started at the point $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, use calculus to reconstruct his flight path.

