## §13.3 Arc length of curves

We have discussed motion in space using by equations like  $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ .

Our next goal is to be able to measure <u>distance traveled</u> or arc length.

Motivating problem: Suppose the position of a fly at time t is

$$\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle,$$

where  $0 \le t \le 2\pi$ .

a) Sketch the graph of  $\mathbf{r}(t)$ . What shape is this?

b) How far does the fly travel between t = 0 and  $t = \pi$ ?

c) What is the speed  $\|\mathbf{v}(t)\|$  of the fly at time t?

d) Compute the integral  $\int_0^{\pi} \|\mathbf{v}(t)\| dt$ . What do you notice? **Definition 17.** We say that the **arc length** of a smooth curve

 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$  from \_\_\_\_\_\_ to \_\_\_\_ that is traced out exactly once is

$$L =$$

**Example 18.** Set up an integral for the arc length of the curve  $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$  from the point (1, 1, 1) to the point (2, 4, 8).

**Example 19.** You try it! Find the length of the portion of the curve in  $\mathbb{R}^3$  given by the parametrization  $\mathbf{r}(t) = \langle 6\sin(2t), 6\cos(2t), 5t \rangle$ ,  $0 \le t \le 2\pi$ .

**Example 20.** You try it! Find the length of the portion of the curve in  $\mathbb{R}^3$  given by the parametrization  $\mathbf{r}(t) = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{k}, \ 0 \le t \le 8.$ 

## Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time  $t_0$  to an arbitrary time t, which is given by the **arc length function**.

$$s(t) =$$

We can use this function to produce parameterizations of curves where the parameter s measures distance along the curve: the points where s=0 and s=1 would be exactly 1 unit of distance apart.

**Example 21.** Find an arc length parameterization of the circle of radius 4 about the origin in  $\mathbb{R}^2$ ,  $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t) \rangle, 0 \le t \le 2\pi$ .

**Example 22.** You try it! Find (a) an arc length parameterization s(t) of the curve C, the portion of the helix of radius 4 in  $\mathbb{R}^3$  parameterized by  $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle, 0 \le t \le \pi/2$ , and (b) use s(t) to find L the length of C

## §13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the <u>curvature</u> of a curve in space along with two vectors that orient the curve.

First, we need the **unit tangent vector**, denoted **T**:

- In terms of an arc-length parameter s: \_\_\_\_\_
- In terms of any parameter t: \_\_\_\_\_

This lets us define the **curvature**,  $\kappa(s) =$  \_\_\_\_\_

**Example 23.** In Example 21 we found an arc length parameterization of the circle of radius 4 centered at (0,0) in  $\mathbb{R}^2$ :

$$\mathbf{r}(s) = \left\langle 4\cos\left(\frac{s}{4}\right), 4\sin\left(\frac{s}{4}\right) \right\rangle, \qquad 0 \le s \le 8\pi.$$

Use this to find T(s) and  $\kappa(s)$ .

Question: In which direction is T changing?

This is the direction of the **principal unit normal**, N(s) =

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization  $\mathbf{r}(t)$ ?

• 
$$T(t) =$$
\_\_\_\_\_\_

• 
$$\mathbf{N}(t) = \underline{\hspace{1cm}}$$

• 
$$\kappa(t) =$$

**Example 24.** Find  $\mathbf{T}, \mathbf{N}, \kappa$  for the helix  $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t), t-1 \rangle, t \in \mathbb{R}$ .

§13.4 Page 30

**Example 25.** You try it! Find  $T, N, \kappa$  for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}, \ t \in \mathbb{R}.$$