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§13.3 Arc length of curves

We have discussed motion in space using by equations like r(t) = hx(t), y(t), z(t)i.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time t is

r(t) = h2 cos(t), 2 sin(t)i,

where 0  t  2⇡.

a)Sketch the graph of r(t). What shape is this?

b)How far does the fly travel between t = 0 and t = ⇡?

c)What is the speed kv(t)k of the fly at time t?

d)Compute the integral

Z ⇡

0
kv(t)k dt. What do you notice?
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Definition 17. We say that the arc length of a smooth curve

r(t) = hx(t), y(t), z(t)i from to that is traced out ex-

actly once is

L =

Example 18. Set up an integral for the arc length of the curve r(t) = ti+ t
2j+ t

3k
from the point (1, 1, 1) to the point (2, 4, 8).
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Example 19. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = h6 sin(2t), 6 cos(2t), 5ti, 0  t  2⇡.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Example 20. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ti+ 2

3t
3/2k, 0  t  8.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t0 to an
arbitrary time t, which is given by the arc length function.

s(t) =

We can use this function to produce parameterizations of curves where the parameter
s measures distance along the curve: the points where s = 0 and s = 1 would be
exactly 1 unit of distance apart.
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Example 21. Find an arc length parameterization of the circle of radius 4 about
the origin in R2, r(t) = h4 cos(t), 4 sin(t)i, 0  t  2⇡.
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Example 22. You try it! Find (a) an arc length parameterization s(t) of the
curve C, the portion of the helix of radius 4 in R3 parameterized by r(t) =
h4 cos(t), 4 sin(t), 3ti, 0  t  ⇡/2, and (b) use s(t) to find L the length of C
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§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with
two vectors that orient the curve.

First, we need the unit tangent vector, denoted T:

• In terms of an arc-length parameter s:

• In terms of any parameter t:

This lets us define the curvature, (s) =
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Example 23. In Example 21 we found an arc length parameterization of the circle
of radius 4 centered at (0, 0) in R2:

r(s) =
D
4 cos

⇣
s

4

⌘
, 4 sin

⇣
s

4

⌘E
, 0  s  8⇡.

Use this to find T(s) and (s).

Question: In which direction is T changing?

This is the direction of the principal unit normal, N(s) =
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We said last time that it is often hard to find arc length parameterizations, so what
do we do if we have a generic parameterization r(t)?

• T(t) =

• (t) = or

• N(t) =

Example 24. Find T,N, for the helix r(t) = h2 cos(t), 2 sin(t), t� 1i, t 2 R.
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Example 25. You try it! Find T,N, for the curve parametrized by

r(t) = (cos t+ t sin t)i+ (sin t� t cos t)j+ 3k, t 2 R.


