§13.3 Page 24

Example 22. You try it! Find (a) an arc length parameterization s(t) of the curve C, the portion of the helix of radius 4 in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle, 0 \le t \le \pi/2$, and (b) use s(t) to find L the length of C

§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the <u>curvature</u> of a curve in space along with two vectors that orient the curve.

First, we need the **unit tangent vector**, denoted **T**:

- In terms of an arc-length parameter s: _____
- In terms of any parameter t: _____

This lets us define the **curvature**, $\kappa(s) =$ ______

Example 23. In Example 21 we found an arc length parameterization of the circle of radius 4 centered at (0,0) in \mathbb{R}^2 :

$$\mathbf{r}(s) = \left\langle 4\cos\left(\frac{s}{4}\right), 4\sin\left(\frac{s}{4}\right) \right\rangle, \quad 0 \le s \le 8\pi.$$

Use this to find T(s) and $\kappa(s)$.

Question: In which direction is T changing?

This is the direction of the **principal unit normal**, N(s) =

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization $\mathbf{r}(t)$?

•
$$T(t) =$$

•
$$\mathbf{N}(t) = \underline{\hspace{1cm}}$$

•
$$\kappa(t) =$$

Example 24. Find $\mathbf{T}, \mathbf{N}, \kappa$ for the helix $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t), t-1 \rangle, t \in \mathbb{R}$.

§13.4 Page 28

Example 25. You try it! Find T, N, κ for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}, \ t \in \mathbb{R}.$$

§14.1 Functions of Multiple Variables

Definition 26. A ______ is a rule that assigns to each _____ of real numbers (x,y) in a set D a _____ denoted by f(x,y).

$$f: D \to \mathbb{R}$$
, where $D \subseteq \mathbb{R}^2$

Example 27. Three examples are

$$f(x,y) = x^2 + y^2$$
, $g(x,y) = \ln(x+y)$, $h(x,y) = \frac{1}{\sqrt{x+y}}$.

Example 28. Find the largest possible domains of f, g, and h.

Definition 29. If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Example 30. Suppose a small hill has height $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ m at each point (x,y). How could we draw a picture that represents the hill in 2D?

Definition 31. The	(also called) of a function
f of two variables are the	curves with equations		$_{-}$, where k is a
constant (in the range of	f). A plot of	for various	values of z is a
(or).	

Some common examples of these are:

- •
- •
- •

Example 32. Create a contour diagram of $f(x,y) = x^2 - y^2$

Definition 33. The ______ of a surface are the curves of _____ of the surface with planes parallel to the

Example 34. Use the traces and contours of $z = f(x, y) = 4 - 2x - y^2$ to sketch the portion of its graph in the first octant.

Definition 35. A _____ is a rule that assigns to each ____ of real numbers (x, y, z) in a set D a ____ denoted by f(x, y, z).

$$f: D \to \mathbb{R}$$
, where $D \subseteq \mathbb{R}^3$

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 36. Describe the largest possible domain of the function

$$f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}.$$

Example 37. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.