Definition 35. A _____ is a rule that assigns to each ____ of real numbers (x, y, z) in a set D a ____ denoted by f(x, y, z). $$f: D \to \mathbb{R}$$, where $D \subseteq \mathbb{R}^3$ We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces. Example 36. Describe the largest possible domain of the function $$f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}.$$ **Example 37.** Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$. ## §14.2 Limits & Continuity **Definition 38.** What is a limit of a function of two variables? **DEFINITION** We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write $$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$$ if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f, $$|f(x, y) - L| < \epsilon$$ whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$. We won't use this definition much: the big idea is that $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ if and only if f(x,y) ______ regardless of how we approach the point (x_0,y_0) . **Definition 39.** A function f(x,y) is **continuous** at (x_0,y_0) if - 1. _____ - 2. _____ - 3. _____ **Key Fact:** Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function. **Example 40.** Evaluate $\lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4}$, if it exists. **Example 41.** You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)} \frac{\cos y+1}{y-\sin x}$, if it exists. Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before. ${f Big}\ {f Idea}$: Limits can behave differently along different ${f paths}$ of approach **Example 42.** Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$, if it exists. Here is its graph. This idea is called the **two-path test:** If we can find ______ to (x_0, y_0) along which _____ takes on two different values, then ## Example 43. Show that the limit $$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$ does not exist. **Example 44.** You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ is DNE by using the two-path test. Example 45. [Challenge:] Show that the limit $$\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4+y^2}$$ does exist using the Squeeze Theorem. **Theorem 46** (Squeeze Theorem). If f(x,y) = g(x,y)h(x,y), where $\lim_{(x,y)\to(a,b)}g(x,y)=0$ and $|h(x,y)|\leq C$ for some constant C near (a,b), then $\lim_{(x,y)\to(a,b)}f(x,y)=0$.