Definition 35. A _____ is a rule that assigns to each ____ of real numbers (x, y, z) in a set D a ____ denoted by f(x, y, z).

$$f: D \to \mathbb{R}$$
, where $D \subseteq \mathbb{R}^3$

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 36. Describe the largest possible domain of the function

$$f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}.$$

Example 37. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.

§14.2 Limits & Continuity

Definition 38. What is a limit of a function of two variables?

DEFINITION We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

$$|f(x, y) - L| < \epsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

We won't use this definition much: the big idea is that $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ if and only if f(x,y) ______ regardless of how we approach the point (x_0,y_0) .

Definition 39. A function f(x,y) is **continuous** at (x_0,y_0) if

- 1. _____
- 2. _____
- 3. _____

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function.

Example 40. Evaluate $\lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4}$, if it exists.

Example 41. You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)} \frac{\cos y+1}{y-\sin x}$, if it exists.

Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before.

 ${f Big}\ {f Idea}$: Limits can behave differently along different ${f paths}$ of approach

Example 42. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$, if it exists. Here is its graph.

This idea is called the **two-path test:**

If we can find ______ to (x_0, y_0) along which _____ takes on two different values, then

Example 43. Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$

does not exist.

Example 44. You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ is DNE by using the two-path test.

Example 45. [Challenge:] Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4+y^2}$$

does exist using the Squeeze Theorem.

Theorem 46 (Squeeze Theorem). If f(x,y) = g(x,y)h(x,y), where $\lim_{(x,y)\to(a,b)}g(x,y)=0$ and $|h(x,y)|\leq C$ for some constant C near (a,b), then $\lim_{(x,y)\to(a,b)}f(x,y)=0$.