Example 53. How many rates of change should the function $f(s,t) = \begin{bmatrix} s^2 + t \\ 2s - t \\ st \end{bmatrix}$ have? Compute them.

So, we computed partial derivatives. How might we **organize** this information?

For any function
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 having the form $f(x_1, \dots, x_n) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{bmatrix}$,

we have _____ inputs, ____ output, and ____ partial derivatives, which we can use to form the **total derivative**.

This is a _____ map from $\mathbb{R}^n \to \mathbb{R}^m$, denoted Df, and we can represent it with an _____, with one column per input and one row per output.

It has the formula $Df_{ij} =$

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$\mathbf{b})\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$$

c)
$$f(x,y) = \sqrt{5x - y}$$

$$d) f(x, y, z) = 2xyz - z^2y$$

e)
$$\mathbf{f}(s,t) = \langle s^2 + t, 2s - t, st \rangle$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

Example 54. You try it! Find the total derivatives of each function:

a)
$$f(x) = x^2 + 1$$

$$\mathbf{b})\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$$

c)
$$f(x,y) = \sqrt{5x - y}$$

$$d) f(x, y, z) = 2xyz - z^2y$$

e)
$$\mathbf{f}(s,t) = \langle s^2 + t, 2s - t, st \rangle$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

In particular, the (total) derivative of **any** function $f : \mathbb{R}^n \to \mathbb{R}^m$, evaluated at $\mathbf{a} = (a_1, \dots, a_n)$, is the linear function that best approximates $f(\mathbf{x}) - f(\mathbf{a})$ at \mathbf{a} .

This leads to the familiar linear approximation formula for functions of one variable: f(x) = f(a) + f'(a)(x - a).

Definition 55. The linearization or linear approximation of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ at the point $\mathbf{a} = (a_1, \dots, a_n)$ is

$$L(\mathbf{x}) =$$

Example 56. Find the linearization of the function $f(x,y) = \sqrt{5x - y}$ at the point (1,1). Use it to approximate f(1.1,1.1).

Question: What do you notice about the equation of the linearization?

We say $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** at **a** if its linearization is a good approximation of f near **a**.

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-L(x,y)}{\|(x,y)-(a,b)\|}=0.$$

In particular, if f is a function f(x,y) of two variables, it is differentiable at (a,b) its graph has a unique tangent plane at (a,b,f(a,b)).

Example 57. Determine if $f(x,y) = \begin{cases} 1 & xy = 0 \\ 0 & xy \neq 0 \end{cases}$ is differentiable at (0,0).

§14.4 Page 50

§14.4 The Chain Rule

Recall the Chain Rule from single variable calculus:

Similarly, the **Chain Rule** for functions of multiple variables says that if $f : \mathbb{R}^p \to \mathbb{R}^p$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are both differentiable functions then

$$D(f(g(\mathbf{x}))) = Df(g(\mathbf{x}))Dg(\mathbf{x}).$$

Example 58. Suppose we are walking on our hill with height $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ along the curve $\mathbf{r}(t) = \langle t+1, 2-t^2 \rangle$ in the plane. How fast is our height changing at time t=1 if the positions are measured in meters and time is measured in minutes?

					+															
					+															
					+															
					+	-														
					+	-														
					+	-														
					+															
					+	-														
			-		+															
			-		+															
					+															
					+															
			-		+															
					+															
		+																		
			-		+															
					+															
					+															
					+	-														
					-															
					+															
1																				

§14.4 Page 51

Example 59. Suppose that W(s,t) = F(u(s,t),v(s,t)), where F,u,v are differentiable functions and we know the following information.

$$u(1,0) = 2$$
 $v(1,0) = 3$
 $u_s(1,0) = -2$ $v_s(1,0) = 5$
 $u_t(1,0) = 6$ $v_t(1,0) = 4$
 $F_u(2,3) = -1$ $F_v(2,3) = 10$

Find $W_s(1,0)$ and $W_t(1,0)$.

§14.4 Page 52

Application to Implicit Differentiation: If F(x, y, z) = c is used to *implicitly* define z as a function of x and y, then the chain rule says:

Example 60. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the sphere $x^2 + y^2 + z^2 = 4$.

§14.5 Page 53

§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then f_x represents the rate of change of z in the x-direction and f_y represents the rate of change of z in the y-direction. What about other directions?

Let's go back to our hill example again, $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$. How could we figure out the rate of change of our height from the point (2,1) if we move in the direction $\langle -1,1\rangle$?

Definition 62. The ______ of $f: \mathbb{R}^n \to \mathbb{R}$ at the point **p** in the direction of a unit vector **u** is

$$D_{\mathbf{u}}f(\mathbf{p}) =$$

if this limit exists.

E.g. for our hill example above we have:

Note that $D_{\mathbf{i}}f =$

$$D_{\mathbf{j}}f =$$

$$D_{\mathbf{k}}f =$$

Definition 63. If $f: \mathbb{R}^n \to \mathbb{R}$, then the ______ of f at $\mathbf{p} \in \mathbb{R}^n$ is the vector function _____ (or _____) defined by

$$\nabla f(\mathbf{p}) =$$

Note: If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point **p**, then f has a directional derivative at **p** in the direction of any unit vector **u** and

$$D_{\mathbf{u}}f(\mathbf{p}) =$$

Example 64. You try it! Find the gradient vector and the directional derivative of each function at the given point **p** in the direction of the given vector **u**.

a)
$$f(x,y) = \ln(x^2 + y^2)$$
, $\mathbf{p} = (-1,1)$, $\mathbf{u} = \left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$

b) $g(x,y,z)=x^2+4xy^2+z^2,$ $\mathbf{p}=(1,2,1),$ \mathbf{u} the unit vector in the direction of $\mathbf{i}+2\mathbf{j}-\mathbf{k}$

Example 65. If $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, the contour map is given below. Find and draw ∇h on the diagram at the points (2,0), (0,4), and $(-\sqrt{2}, -\sqrt{2}).$ At the point (2,0), compute $D_{\mathbf{u}}h$ for the vectors $\mathbf{u}_1 = \mathbf{i}, \mathbf{u}_2 = \mathbf{j}, \mathbf{u}_3 = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle.$

Note that the gradient vector ∇f is ______ to the level curves of the function _____.

Similarly, for f(x, y, z), $\nabla f(a, b, c)$ is _____

§14.5 Page 58

Example 66. You try it! Sketch the curve $x^2 + y^2 = 4$ together with (a) the vector $\nabla f \mid_P$ and (b) the tangent line at $P(\sqrt{2}, \sqrt{2})$. Be sure to label the tangent line with the equation which defines it.

§14.5 Page 59

ChatGPT ~

what's the latex symbol \nabla

The LaTeX symbol \nabla renders as:

 ∇

It is called "nabla" or the del operator, and it is used primarily in vector calculus. It represents the vector differential operator:

$$abla = \left[rac{\partial}{\partial x_1}, rac{\partial}{\partial x_2}, \ldots, rac{\partial}{\partial x_n}
ight]$$

Common Uses:

• **Gradient** of a scalar function f:

$$abla f = \left[rac{\partial f}{\partial x_1}, rac{\partial f}{\partial x_2}, \dots
ight]$$

• **Divergence** of a vector field \vec{F} :

$$abla \cdot ec{F}$$

• Curl of a vector field \vec{F} :

$$abla imes ec{F}$$

• Laplacian of a scalar field f:

$$abla^2 f =
abla \cdot
abla f$$

So in summary, \nabla is a compact and powerful symbol in multivariable calculus, especially when working with fields and differential operators.

日 B P 70 CV