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Example 53. How many rates of change should the function f(s, t) =

2

4
s
2 + t

2s� t

st

3

5

have? Compute them.

So, we computed partial derivatives. How might we organize this information?

For any function f : Rn ! Rm having the form f(x1, . . . , xn) =

2

64
f1(x1, . . . , xn)

.

.

.

fm(x1, . . . , xn)

3

75,

we have inputs, output, and partial derivatives, which

we can use to form the total derivative.

This is a map from Rn ! Rm, denoted Df , and we can represent it

with an , with one column per input and one row per output.

It has the formula Dfij =
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Example 54. You try it! Find the total derivatives of each function:

a)f(x) = x
2 + 1

b)r(t) = pcos(t), sin(t), th

c) f(x, y) =
i
5x� y

d)f(x, y, z) = 2xyz � z
2
y

e) f(s, t) = ps2 + t, 2s� t, sth

What does it mean? In di↵erential calculus, you learned that one in-

terpretation of the derivative is as a slope. Another interpretation is that the

derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by

3Blue1Brown.)
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In particular, the (total) derivative of any function f : Rn ! Rm, evaluated at

a = (a1, . . . , an), is the linear function that best approximates f(x)� f(a) at a.

This leads to the familiar linear approximation formula for functions of one variable:

f(x) = f(a) + f
0(a)(x� a).

Definition 55. The linearization or linear approximation of a di↵erentiable

function f : Rn ! Rm at the point a = (a1, . . . , an) is

L(x) =

Example 56. Find the linearization of the function f(x, y) =
i
5x� y at the point

(1, 1). Use it to approximate f(1.1, 1.1).

Question: What do you notice about the equation of the linearization?
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We say f : Rn ! R is di↵erentiable at a if its linearization is a good approximation

of f near a.

lim
(x,y)!(a,b)

f(x, y)� L(x, y)

k(x, y)� (a, b)k = 0.

In particular, if f is a function f(x, y) of two variables, it is di↵erentiable at (a, b)

its graph has a unique tangent plane at (a, b, f(a, b)).

Example 57. Determine if f(x, y) =

(
1 xy = 0

0 xy 6= 0
is di↵erentiable at (0, 0).
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§14.4 The Chain Rule

Recall the Chain Rule from single variable calculus:

Similarly, the Chain Rule for functions of multiple variables says that if f : Rp �
Rm and g : Rn � Rp are both di↵erentiable functions then

D(f(g(x))) = Df(g(x))Dg(x).

Example 58. Suppose we are walking on our hill with height h(x, y) = 4!1

4
x
2!1

4
y
2

along the curve r(t) = pt+1, 2! t
2h in the plane. How fast is our height changing at

time t = 1 if the positions are measured in meters and time is measured in minutes?
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Example 59. Suppose that W (s, t) = F (u(s, t), v(s, t)), where F, u, v are di↵eren-

tiable functions and we know the following information.

u(1, 0) = 2 v(1, 0) = 3

us(1, 0) = �2 vs(1, 0) = 5

ut(1, 0) = 6 vt(1, 0) = 4

Fu(2, 3) = �1 Fv(2, 3) = 10

Find Ws(1, 0) and Wt(1, 0).
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Application to Implicit Di↵erentiation: If F (x, y, z) = c is used to implicitly

define z as a function of x and y, then the chain rule says:

Example 60. Compute
@z

@x
and

@z

@y
for the sphere x

2 + y
2 + z

2 = 4.
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§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then fx represents the rate of change of z

in the x-direction and fy represents the rate of change of z in the y-direction. What

about other directions?
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Let’s go back to our hill example again, h(x, y) = 4 � 1

4
x
2 � 1

4
y
2. How could we

figure out the rate of change of our height from the point (2, 1) if we move in the

direction h�1, 1i?

Definition 62. The of f : Rn ! R at the point p

in the direction of a unit vector u is

Duf(p) =

if this limit exists.

E.g. for our hill example above we have:
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Note that Dif = Djf = Dkf =

Definition 63. If f : Rn ! R, then the of f at p 2 Rn is the

vector function (or ) defined by

rf(p) =

Note: If f : Rn ! R is di↵erentiable at a point p, then f has a directional derivative

at p in the direction of any unit vector u and

Duf(p) =
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Example 64. You try it! Find the gradient vector and the directional derivative of

each function at the given point p in the direction of the given vector u.

a)f(x, y) = ln(x2 + y
2),p = (�1, 1),u =

⌧
1p
5
,
�2p
5

�

b)g(x, y, z) = x
2 + 4xy2 + z

2, p = (1, 2, 1), u the unit vector in the direction of

i+ 2j� k
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Example 65. If h(x, y) = 4� 1

4
x
2� 1

4
y
2, the contour map is given below. Find and

draw rh on the diagram at the points (2, 0), (0, 4), and (�
p
2,�

p
2). At the point

(2, 0), compute Duh for the vectors u1 = i,u2 = j,u3 = h 1p
2
,

1p
2
i.

Note that the gradient vector rf is to the level curves of the

function .

Similarly, for f(x, y, z), rf(a, b, c) is
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Example 66. You try it! Sketch the curve x2+ y
2 = 4 together with (a) the vector

rf |P and (b) the tangent line at P (
p
2,
p
2). Be sure to label the tangent line with

the equation which defines it.

x

y
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