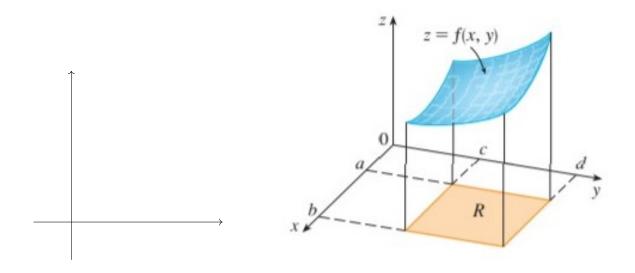
$\S 15.1$ Double Integrals, Iterated Integrals, Change of Order


Recall: Riemann sum and the definite integral from single-variable calculus.

Double Integrals

Volumes and Double integrals Let R be the closed rectangle defined below:

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

Let f(x,y) be a function defined on R such that $f(x,y) \geq 0$. Let S be the solid that lies above R and under the graph f.

Question: How can we estimate the volume of S?

Definition 79. The ______ of f(x,y) over a rectangle R is

$$\iint_R f(x,y) \ dA = \lim_{|P| \to 0} \sum_{k=1}^n f(x_k, y_k) \Delta A_k$$

if this limit exists.

•

•

Question: How can we compute a double integral?

Answer:

Let f(x,y) = 2xy and lets integrate over the rectangle $R = [1,3] \times [0,4]$.

We want to compute $\int_1^3 \int_0^4 f(x,y) \, dy \, dx$, but lets consider the slice at x=2.

What does $\int_0^4 f(2, y) dy$ represent here?

In general, if f(x, y) is integrable over $R = [a, b] \times [c, d]$, then $\int_c^d f(2, y) \, dy$ represents:

What about $\int_{c}^{d} f(x, y) dy$?

Let $A(x) = \int_{c}^{d} f(x, y) dy$. Then,

$$= \int_{a}^{b} A(x)dx =$$

This is called an ______.

Example 80. Evaluate $\int_{1}^{2} \int_{3}^{4} 6x^{2}y \ dy \ dx$.

Theorem 81 (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 82. You try it! Integrate:

a)
$$\int_{0}^{2} \int_{-1}^{1} x - y \ dy \ dx$$
 easy

b)
$$\int_0^1 \int_0^1 \frac{y}{1+xy} \ dx \ dy \ \mathbf{medium}$$

c)
$$\int_1^4 \int_1^e \frac{\ln x}{xy} dx dy$$
 HARD!

Example 83. Compute $\iint_R xe^{e^{e^y}} dA$, where R is the rectangle $[-1,1] \times [0,4]$.

Hint: Fubini's Theorem.

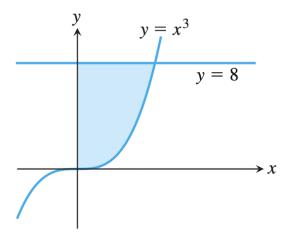
§15.2 Page 83

§15.2 Double Integrals on General Regions

Question: What if the region R we wish to integrate over is not a rectangle?

Answer: Repeat same procedure - it will work if the boundary of R is smooth and f is continuous.

Example 84. Compute the volume of the solid whose base is the triangle with vertices (0,0),(0,1),(1,0) in the xy-plane and whose top is z=2-x-y.


Vertically simple:

Horizontally simple:

Example 85. Write the two iterated integrals for $\iint_R 1 \ dA$ for the region R which is bounded by $y = \sqrt{x}, y = 0$, and x = 9.

Example 86. Set up an iterated integral to evaluate the double integral $\iint_R 6x^2y \ dA$, where R is the region bounded by x = 0, x = 1, y = 2, and y = x.

Example 87. You try it! Write the two iterated integrals for $\iint_R 1 \ dA$ for the region R which is bounded by x = 0, y = 8, and $y = x^3$.

§15.2 Page 87

Example 88. Sketch the region of integration for the integral

$$\int_0^1 \int_{4x}^4 f(x,y) \, dy \, dx.$$

Then write an equivalent iterated integral in the order dx dy.