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§15.3 Area & Average Value

Two other applications of double integrals are computing the area of a region in the

plane and finding the average value of a function over some domain.

Area: If R is a region bounded by smooth curves, then

Area(R) =

Example 89. Find the area of the region R bounded by y =
p
x, y = 0, and x = 9.

Average Value: The average value of f(x, y) on a region R contained in R2 is

favg =
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Example 90. Find the average temperature on the region R in the previous example

if the temperature at each point is given by T (x, y) = 4xy2.
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Example 91. You try it! Find the average value of the function f(x, y) = x
2 + y

2

on the region R = [0, 2]⇥ [0, 2].
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Example 91. You try it! Find the average value of the function f(x, y) = x
2 + y

2

on the region R = [0, 2]⇥ [0, 2].
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Example 92. Find the average value of the function f(x, y) = sin(x+ y) on (a) the

region R1 = [0, ⇡]⇥ [0, ⇡], and (b) the region R2 = [0, ⇡]⇥ [0, ⇡/2].

Hint: choose your order of integration carefully!
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Example 93. You try it! Which value is larger for the function f(x, y) = xy: the

average value of f over the square R1 = [0, 1]⇥ [0, 1], or the average value of f over

R2 the quarter circle x2+y
2  1 in Quadrant I? Verify your guess with calculations.
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Example 93. You try it! Which value is larger for the function f(x, y) = xy: the

average value of f over the square R1 = [0, 1]⇥ [0, 1], or the average value of f over

R2 the quarter circle x2+y
2  1 in Quadrant I? Verify your guess with calculations.
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§15.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates

x

y Cartesian coordinates: Give the distances in

and directions from

Polar coordinates:

• r = distance from to

• ✓ = angle between the ray and the

positive

We can use trigonometry to go back and forth.

Polar to Cartesian:

x = r cos(✓) y = r sin(✓)

Cartesian to Polar:

r
2 = x

2 + y
2 tan(✓) =

y

x
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Example 94. a)Find a set of polar coordinates for the point (x, y) = (1, 1).

b)Graph the set of points (x, y) that satisfy the equation r = 2 and the set of points

that satisfy the equation ✓ = ⇡/4 in the xy-plane.

c)Write the function f(x, y) =
p

x2 + y2 in polar coordinates.

d) You try it! Write a Cartesian equation describing the points that satisfy r =

2 sin(✓).

Goal: Given a regionR in the xy-plane described in polar coordinates and a function

f(r, ✓) on R, compute
RR

R f(r, ✓) dA.

Example 95. Compute the area of the disk of radius 5 centered at (0, 0).

Remember: In polar coordinates, the area form dA =
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Goal: Given a regionR in the xy-plane described in polar coordinates and a function

f(r, ✓) on R, compute
RR

R f(r, ✓) dA.

Example 96. Compute the area of the disk of radius 5 centered at (0, 0).

Cont.

Remember: In polar coordinates, the area form dA =
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Example 96. Compute
pp

D e
p(x2+y2)

dA on the washer-shaped region 1 ⇥ x
2+y

2 ⇥
4.

Example 97. Compute the area of the smaller region bounded by the circle x
2 +

(y p 1)2 = 1 and the line y = x.
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Example 98. You try it! Write an integral for the volume under z = x on the

region between the cardioid r = 1 + cos(⇡) and the circle r = 1, where x  0.

x

y

r = 1 + cos(⇡)
r = 1



Review Page 96

Example 98. You try it! Write an integral for the volume under z = x on the

region between the cardioid r = 1 + cos(⇡) and the circle r = 1, where x  0.

x

y

r = 1 + cos(⇡)
r = 1
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Example 100. Convert the integral in polar coordinates to an equivalent integral

in cartesian coordinates, but do not evaluate. Then, evaluate the original integral

to find the value of
RR

R f(x, y) dA.

Z ⇡/2

⇡/6

Z csc ✓

1
r
2 cos ✓ dr d✓
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Tips and tricks

For horizontal lines such as x = 2:

For vertical lines such as y = 1 (e.g., Example 100):

For o↵-set circles such as x2 + (y � 1)2 = 1 (e.g., Example 98):
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Example 101. You try it! Find the area of the region R which is the smaller part

bounded between the circle x
2 + y

2 = 4 and the line x = 1.
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Example 101. You try it! Find the area of the region R which is the smaller part

bounded between the circle x
2 + y

2 = 4 and the line x = 1.
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Math 2551 Worksheet: Exam 2 Review

1. Which of the following statements are true if f(x, y) is di!erentiable at (x0, y0)? Give
reasons for your answers.

(a) If u is a unit vector, the derivative of f at (x0, y0) in the direction of u is (fx(x0, y0)i+
fy(x0, y0)j) · u.

(b) The derivative of f at (x0, y0) in the direction of u is a vector.

(c) The directional derivative of f at (x0, y0) has its greatest value in the direction of
→f .

(d) At (x0, y0), the vector →f is normal to the curve f(x, y) = f(x0, y0).

2. Find dw/dt at t = 0 if w = sin(xy + ω), x = et, and y = ln(t+ 1).

3. Find the extreme values of f(x, y) = x3 + y2 on the circle x2 + y2 = 1.

4. Test the function f(x, y) = x3 + y3 + 3x2 ↑ 3y2 for local maxima and minima and saddle
points and find the function’s value at these points.

5. Find the points on the surface xy + yz + zx ↑ x ↑ z2 = 0 where the tangent plane is
parallel to the xy-plane.

6. Evaluate the integral

∫ 1

0

∫ 2

2y

4 cos(x2) dx dy. Describe why you made any choices you did

in the course of evaluating this integral.

7. If f(x, y) ↓ 2 for all (x, y), is it possible that the average value of f(x, y) on a unit disk

centered at the origin is
2

ω
?

8. A swimming pool is circular with a 40 foot diameter. The depth is constant along east-
west lines and increases linearly from 2 feet at the south end to 7 feet at the north end.
Find the volume of water in the pool.

1


