$\S15.3$ Area & Average Value

Two other applications of double integrals are computing the area of a region in the plane and finding the average value of a function over some domain.

Area: If R is a region bounded by smooth curves, then

$$Area(R) = \underline{\hspace{1cm}}$$

Example 89. Find the area of the region R bounded by $y = \sqrt{x}, y = 0$, and x = 9.

Average Value: The average value of f(x,y) on a region R contained in \mathbb{R}^2 is

$$f_{avg} = \underline{\hspace{1cm}}$$

Example 90. Find the average temperature on the region R in the previous example if the temperature at each point is given by $T(x,y) = 4xy^2$.

Example 91. You try it! Find the average value of the function $f(x,y) = x^2 + y^2$ on the region $R = [0,2] \times [0,2]$.

Example 91. You try it! Find the average value of the function $f(x,y) = x^2 + y^2$ on the region $R = [0,2] \times [0,2]$.

Example 92. Find the average value of the function $f(x,y) = \sin(x+y)$ on (a) the region $R_1 = [0,\pi] \times [0,\pi]$, and (b) the region $R_2 = [0,\pi] \times [0,\pi/2]$.

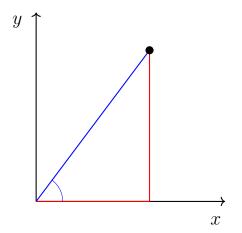
Hint: choose your order of integration carefully!

Example 93. You try it! Which value is larger for the function f(x,y) = xy: the average value of f over the square $R_1 = [0,1] \times [0,1]$, or the average value of f over R_2 the quarter circle $x^2 + y^2 \le 1$ in Quadrant I? Verify your guess with calculations.

Example 93. You try it! Which value is larger for the function f(x,y) = xy: the average value of f over the square $R_1 = [0,1] \times [0,1]$, or the average value of f over R_2 the quarter circle $x^2 + y^2 \le 1$ in Quadrant I? Verify your guess with calculations.

§15.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates



Cartesian coordinates: Give the distances in

and _____ directions from _____

Polar coordinates:

- r = distance from _____ to ____
- θ = angle between the ray _____ and the positive _____

We can use trigonometry to go back and forth.

Polar to Cartesian:

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$

Cartesian to Polar:

$$r^2 = x^2 + y^2 \qquad \tan(\theta) = \frac{y}{x}$$

Example 94. a) Find a set of polar coordinates for the point (x, y) = (1, 1).

b) Graph the set of points (x, y) that satisfy the equation r = 2 and the set of points that satisfy the equation $\theta = \pi/4$ in the xy-plane.

- c) Write the function $f(x,y) = \sqrt{x^2 + y^2}$ in polar coordinates.
- d) You try it! Write a Cartesian equation describing the points that satisfy $r = 2\sin(\theta)$.

Goal: Given a region R in the xy-plane described in polar coordinates and a function $f(r,\theta)$ on R, compute $\iint_R f(r,\theta) \ dA$.

Example 95. Compute the area of the disk of radius 5 centered at (0,0).

Remember: In polar coordinates, the area form dA =

Goal: Given a region R in the xy-plane described in polar coordinates and a function $f(r,\theta)$ on R, compute $\iint_R f(r,\theta) \ dA$.

Example 96. Compute the area of the disk of radius 5 centered at (0,0). *Cont.*

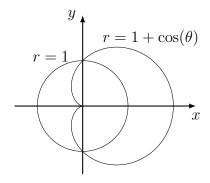
Remember: In polar coordinates, the area form dA =______

Example 96. Compute $\iint_D e^{-(x^2+y^2)} dA$ on the washer-shaped region $1 \le x^2+y^2 \le 4$.

Example 97. Compute the area of the smaller region bounded by the circle $x^2 + (y-1)^2 = 1$ and the line y = x.

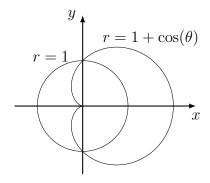
Review Page 96

Example 98. You try it! Write an integral for the volume under z = x on the region between the cardioid $r = 1 + \cos(\theta)$ and the circle r = 1, where $x \ge 0$.



Review Page 96

Example 98. You try it! Write an integral for the volume under z = x on the region between the cardioid $r = 1 + \cos(\theta)$ and the circle r = 1, where $x \ge 0$.



§15.4 Page 98

Example 100. Convert the integral in polar coordinates to an equivalent integral in cartesian coordinates, but do not evaluate. Then, evaluate the original integral to find the value of $\iint_R f(x,y) \ dA$.

$$\int_{\pi/6}^{\pi/2} \int_{1}^{\csc \theta} r^2 \cos \theta \ dr \ d\theta$$

Tips and tricks

For horizontal lines such as x = 2:

For vertical lines such as y = 1 (e.g., Example 100):

For off-set circles such as $x^2 + (y - 1)^2 = 1$ (e.g., Example 98):

§15.4 Page 100

Example 101. You try it! Find the area of the region R which is the smaller part bounded between the circle $x^2 + y^2 = 4$ and the line x = 1.

§15.4 Page 100

Example 101. You try it! Find the area of the region R which is the smaller part bounded between the circle $x^2 + y^2 = 4$ and the line x = 1.

Math 2551 Worksheet: Exam 2 Review

- 1. Which of the following statements are true if f(x, y) is differentiable at (x_0, y_0) ? Give reasons for your answers.
 - (a) If **u** is a unit vector, the derivative of f at (x_0, y_0) in the direction of **u** is $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$.
 - (b) The derivative of f at (x_0, y_0) in the direction of **u** is a vector.
 - (c) The directional derivative of f at (x_0, y_0) has its greatest value in the direction of ∇f .
 - (d) At (x_0, y_0) , the vector ∇f is normal to the curve $f(x, y) = f(x_0, y_0)$.
- 2. Find dw/dt at t = 0 if $w = \sin(xy + \pi)$, $x = e^t$, and $y = \ln(t + 1)$.
- 3. Find the extreme values of $f(x,y) = x^3 + y^2$ on the circle $x^2 + y^2 = 1$.
- 4. Test the function $f(x,y) = x^3 + y^3 + 3x^2 3y^2$ for local maxima and minima and saddle points and find the function's value at these points.
- 5. Find the points on the surface $xy + yz + zx x z^2 = 0$ where the tangent plane is parallel to the xy-plane.
- 6. Evaluate the integral $\int_0^1 \int_{2y}^2 4\cos(x^2) dx dy$. Describe why you made any choices you did in the course of evaluating this integral.
- 7. If $f(x,y) \ge 2$ for all (x,y), is it possible that the average value of f(x,y) on a unit disk centered at the origin is $\frac{2}{\pi}$?
- 8. A swimming pool is circular with a 40 foot diameter. The depth is constant along east-west lines and increases linearly from 2 feet at the south end to 7 feet at the north end. Find the volume of water in the pool.