§15.5-15.6 Triple Integrals & Applications

Idea: Suppose D is a solid region in \mathbb{R}^3 . If f(x, y, z) is a function on D, e.g. mass density, electric charge density, temperature, etc., we can approximate the total value of f on D with a Riemann sum.

$$\sum_{k=1}^{n} f(x_k, y_k, z_k) \Delta V_k,$$

by breaking D into small rectangular prisms ΔV_k .

Taking the limit gives a

Important special case:

$$\iiint_D 1 \ dV = \underline{\hspace{1cm}}$$

Again, we have Fubini's theorem to evaluate these triple integrals as iterated integrals.

Other important spatial applications:

TABLE 15.1 Mass and first moment formulas

THREE-DIMENSIONAL SOLID

Mass:
$$M = \iiint_D \delta dV$$
 $\delta = \delta(x, y, z)$ is the density at (x, y, z) .

First moments about the coordinate planes:

$$M_{yz} = \iiint_D x \, \delta \, dV, \qquad M_{xz} = \iiint_D y \, \delta \, dV, \qquad M_{xy} = \iiint_D z \, \delta \, dV$$

Center of mass:

$$\overline{x} = \frac{M_{yz}}{M}, \qquad \overline{y} = \frac{M_{xz}}{M}, \qquad \overline{z} = \frac{M_{xy}}{M}$$

TWO-DIMENSIONAL PLATE

Mass:
$$M = \iint_{R} \delta dA$$
 $\delta = \delta(x, y)$ is the density at (x, y) .

First moments:
$$M_y = \iint_R x \, \delta \, dA, \qquad M_x = \iint_R y \, \delta \, dA$$

Center of mass:
$$\bar{x} = \frac{M_y}{M}$$
, $\bar{y} = \frac{M_x}{M}$

Example 102. 1. How to do the computation:

Compute
$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx$$
.

2. What does it mean: What shape is this the volume of?

3. How to reorder the differentials: Write an equivalent iterated integral in the order $dy \ dz \ dx$.

Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

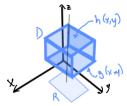
(a)
$$\int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{xyz} dx dy dz$$

(b)
$$\int_0^{\pi/3} \int_0^1 \int_{-2}^3 y \sin z \ dx \ dy \ dz$$

We will think about converting triple integrals to iterated integrals in terms of the $_$ of D on one of the coordinate planes.

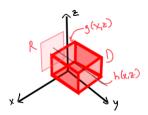
Case 1: z-simple) region. If R is the projection of D on the xy-plane and D is bounded above and below by the surfaces z = h(x, y) and z = g(x, y), then

$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(x,y)}^{h(x,y)} f(x,y,z) \ dz \right) \ dy \ dx$$



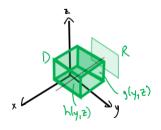
Case 2: y-simple) region. If R is the projection of D on the xz-plane and D is bounded right and left by the surfaces y = h(x, z) and y = g(x, z), then

$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(x,z)}^{h(x,z)} f(x,y,z) \ dy \right) \ dz \ dx$$



Case 3: x-simple) region. If R is the projection of D on the yz-plane and D is bounded front and back by the surfaces x = h(y, z) and x = g(y, z), then

$$\iiint_D f(x,y,z) \ dV = \iint_R \left(\int_{g(y,z)}^{h(y,z)} f(x,y,z) \ dx \right) \ dz \ dy$$



Example 104. Write an integral for the mass of the solid D in the first octant with $2y \le z \le 3 - x^2 - y^2$ with density $\delta(x, y, z) = x^2y + 0.1$ by treating the solid as a) z-simple and b) x-simple. Is the solid also y-simple?

Example 104 (cont.)

Rules for Triple Integrals for the Sketching Impaired (credit to Wm. Douglas Withers)

- Rule 1: Choose a variable appearing exactly twice for the next integral.
- Rule 2: After setting up an integral, cross out any constraints involving the variable just used.
- Rule 3: Create a new constraint by setting the lower limit of the preceding integral less than the upper limit.
- Rule 4: A square variable counts twice.
- Rule 5: The region of integration of the next step must lie within the domain of any function used in previous limits.
- Rule 6: If you do not know which is the upper limit and which is the lower, take a guess but be prepared to backtrack.
- Rule 7: When forced to use a variable appearing more than twice, choose the most restrictive pair of constraints.
- Rule 8: When unable to determine the most restrictive pair of constraints, set up the integral using each possible most restrictive pair and add the results.

Example 105. You try it! Find the volume of the region in the first quadrant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.

Example 105. You try it! Find the volume of the region in the first quadrant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.