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§15.5-15.6 Triple Integrals & Applications

Idea: Suppose D is a solid region in R3. If f(x,y, 2) is a function on D, e.g. mass
density, electric charge density, temperature, etc., we can approximate the total

value of f on D with a Riemann sum.

> f @k yes 2) AV:,

k=1

by breaking D into small rectangular prisms AVj.
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Taking the limit gives a

:///Df(x,y,z) av

Important special case:

Jl -

Again, we have Fubini’s theorem to evaluate these triple integrals as iterated inte-

grals.

Other important spatial applications:

TABLE 15.1 Mass and first moment formulas

THREE-DIMENSIONAL SOLID

Mass: M = ///6 dVv & = d(x, y, z) is the density at (x. v, 2).
D

First moments about the coordinate planes:

M, = ///.\'de, M, = //])‘S(IV, M, = ///:B(IV
D D D

Center of mass:
_— M\': — M\'C
X = 7., y = 7#

TWO-DIMENSIONAL PLATE

Mass: M= //5 dA 0 = &(x, y) is the density at (x. y).
R
First moments: M, = // xOdA, M = // y o dA

R R

M.,
M

a1

SIS
4.|l
x|X

Center of mass: X =




§15.5-15.6 Page 103

Example 102. 1. How to do the computation:

1 2—x 2—x—y
Compute / / / dz dy dx.
0o Jo 0

2. What does it mean: What shape is this the volume of?

3. How to reorder the differentials: Write an equivalent iterated integral in

the order dy dz dzx.
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Example 103. You try it/ Evaluate the triple integrals. What is the shape of the

region of integration D in each case?

e 62 63 1
(a) / / / — dz dy dz
1 J1 J1 TYz

©/3 13
(b) / / / ysinz dx dy dz
0o Jo J-2
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We will think about converting triple integrals to iterated integrals in terms of the

of D on one of the coordinate planes.

Case 1: z-simple) region. If R is the projection of D on the xy-plane and D is bounded
above and below by the surfaces z = h(x,y) and z = g(x,y), then

///D J(@.y,z) dV = //R (/g:;y)f(x,y, ) dz) dy dx

Case 2: y-simple) region. If R is the projection of D on the zz-plane and D is bounded
right and left by the surfaces y = h(x, z) and y = g(z, 2), then

[ resarar= [ ([ e )

AE
f 3(\A‘b)
D

W)

K

¥ Y,

Case 3: x-simple) region. If R is the projection of D on the yz-plane and D is bounded
front and back by the surfaces x = h(y, z) and = = g(y, z), then

///D flx,y,2) dV = //R (/g:ij)f(x,y,z) da;) dz dy

D R

3(‘11,‘9
* \\L’ IZ) )
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Example 104. Write an integral for the mass of the solid D in the first octant with
2y < 2z < 3 — 2% — y? with density §(z, vy, 2) = 2%y + 0.1 by treating the solid as a)

z-simple and b) x-simple. Is the solid also y-simple?
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Example (104 (cont.)
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Rules for Triple Integrals for the Sketching Impaired (credit to Wm.
Douglas Withers)

Rule 1: Choose a variable appearing exactly twice for the next integral.

Rule 2: After setting up an integral, cross out any constraints involving
the variable just used.

Rule 3: Create a new constraint by setting the lower limit of the preceding
integral less than the upper limit.

Rule 4: A square variable counts twice.

Rule 5: The region of integration of the next step must lie within the
domain of any function used in previous limits.

Rule 6: If you do not know which is the upper limit and which is the lower,
take a guess - but be prepared to backtrack.

Rule 7: When forced to use a variable appearing more than twice, choose
the most restrictive pair of constraints.

Rule 8: When unable to determine the most restrictive pair of constraints,
set up the integral using each possible most restrictive pair and
add the results.

Example 105. You try it/ Find the volume of the region in the first quadrant
bounded by the coordinate planes and the planes x + 2z =1, y + 2z = 2.
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Example 105. You try it/ Find the volume of the region in the first quadrant
bounded by the coordinate planes and the planes x + 2z =1, y + 2z = 2.
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§15.7 Triple Integrals in Cylindrical & Spherical
Coordinates

Conventions:
Cylindrical Coordinate System

z
Example 108. a)Find cylindrical coor-
(r,0,2) @ dinates for the point with Cartesian co-
ordinates (—1,v/3,3).
z
Yy
9 T

X

Cylindrical to Cartesian:
r=rcos(f), y=rsinl), z==z2

Cartesian to Cylindrical:

b)Find Cartesian coordinates for the

point with cylindrical coordinates
(2,5m/4,1).

2=y, tan(d) =2

= z=2z
x
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Example 109. In zyz-space sketch the cylindrical box

B=A{(r60,2)|1<r<2 7/6<6<7/3, 0<z2<2}.

Triple Integrals in Cylindrical Coordinates

We have dV =

Example 110. Set up a iterated integral in cylindrical coordinates for the volume
of the region D lying below z = £+ 2, above the xy-plane, and between the cylinders
2>+ 9> =1 and 2% + ¢ = 4.
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Example 111. You try it/ Suppose the density of the cone defined by r =1 — 2
with z > 0 is given by §(r,0,2) = z. Set up an iterated integral in cylindrical

coordinates that gives the mass of the cone.
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Spherical Coordinate System

<
(p,0,9)
¢
Y
0

T

Spherical to Cartesian:

x = psin(p) cos(d)
y = psin(p) sin(0)
z = pcos(p)

Cartesian to Spherical:

P

tan(g) = Z
X
/ 2 2

z

Conventions:

Example 112. a)Find spherical coordi-
nates for the point with Cartesian co-
ordinates (—2,2,v/8).

b)Find Cartesian coordinates for the
point  with  spherical coordinates

(2,7/2,m/3).
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Example 113. In zyz-space sketch the spherical box

B={(p,0,0) | 1<p<2, 0<p<7/4, 7/6 <0 <7/3}.
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Triple Integrals in Spherical Coordinates

We have dV =

Example 114. Write an iterated integral for the volume of the “ice cream cone” D

bounded above by the sphere 224+y>+2? = 1 and below by the cone z = v/3+/22 + 2.
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Example 115. You try it/ Write an iterated integral for the volume of the region
that lies inside the sphere x2 4+ y? + 22 = 2 and outside the cylinder 22 + y? = 1.
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§15.8 Change of Variables in Multiple Integrals

1

N

V3
Thinking about single variable calculus: Compute /
1
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Theorem 116 (Substitution Theorem). Suppose T(u,v) is a one-to-one, differen-
tiable transformation that maps the region G in the uv-plane to the region R in the

xy-plane. Then

J[ s drdy= || s aeor. o)) du do

y/2+1 20 —
dx dy via the transformation x = u+w,

4
Example 117. Evaluate / /
0 Jy/2 2

Yy = 2v.

1. Find T:
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2. Find G and sketch:

3. Find Jacobian:

4. Convert and use theorem:
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Example 118. a) You try it/ Find the Jacobian of the transformation

r=u+ (1/2)v, y=v.

b) You try it/ Which transformation(s) seem suitable for the integral

2 (442 2
/ / y3 (22 — y)e® Y da dy?
0 Jy/2

) u=z,v=y Vu=y,v=2x—y

i) u= /2% + y? v = arctan(y/z) Viu=2r—y,v=y

111)u — % —y, v = y?) Vl)u = e(Qx*y)27 v — y3
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Theorem 119 (Derivative of Inverse Coordinate Transformation). If T'(u,v) is a
one-to-one differentiable transformation that maps a region G in the uv-plane to a

region R in the xy-plane and T (ug,vo) = (xg, Yo), then we have

1

| det(DT(uo, 00))| = 5 BT 70 300)
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Example 120. Let’s evaluate // M
R

3 where R is the region in the xy-plane
x

bounded by y = x,y = 3x,y = 1 — x, and y = 2 — x. Consider the coordinate

transformation u = = + y,v = y/x.

1. Find the rectangle GG in the uv plane that is mapped to R

2. Evaluate f(T(u,v))|det(DT(u,v))| in terms of v and v without directly

solving for T using the theorem above
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3. Use the Substitution Theorem to compute the integral.



