EXAM 3 FORMULA SHEET

- Trig identities: $\sin^2(x) = \frac{1}{2}(1 \cos(2x)), \ \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- Volume $(D) = \iiint_D dV$, $f_{avg} = \frac{\iiint_D f(x, y, z) dV}{\text{volume of } D}$ or $\frac{\int_C f(x, y, z) ds}{\text{length of } C}$, Mass: $M = \iiint_D \delta dV$
- Cylindrical coordinates: $x = r \cos(\theta)$, $y = r \sin(\theta)$, z = z, $dV = r dz dr d\theta$
- Spherical coordinates: $x = \rho \sin(\phi) \cos(\theta), y = \rho \sin(\phi) \sin(\theta), z = \rho \cos(\phi), dV = \rho^2 \sin(\phi) d\rho d\phi d\theta$
- Substitution for double integrals: If R is the image of G under a coordinate transformation $\mathbf{T}(u, v) = \langle x(u, v), y(u, v) \rangle$ then

$$\iint_R f(x,y) \, dx \, dy = \iint_G f(\mathbf{T}(u,v)) |\det D\mathbf{T}(u,v)| \, du \, dv.$$

- Scalar line integral: $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$
- Tangential vector line integral: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$
- Normal vector line integral: $\int_C \mathbf{F}(x, y) \cdot \mathbf{n} \, ds = \int_C P \, dy Q \, dx = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle y'(t), -x'(t) \rangle \, dt.$
- Fundamental Theorem of Line Integrals: $\int_C \nabla f \cdot d\mathbf{r} = f(B) f(A)$ if C is a path from A to B
- Curl (Mixed Partials) Test: $\mathbf{F} = \nabla f$ if curl $\mathbf{F} = \mathbf{0} \Leftrightarrow P_z = R_x, Q_z = R_y$, and $Q_x = P_y$.
- $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$ div $\mathbf{F} = \nabla \cdot \mathbf{F}$ curl $\mathbf{F} = \nabla \times \mathbf{F}$
- Green's Theorem: If C is a simple closed curve with positive orientation and R is the simply-connected region it encloses, then

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA \qquad \qquad \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (\nabla \cdot \mathbf{F}) \, dA$$

- Surface Area= $\iint_S 1 d\sigma$
- Scalar surface integral: $\iint_S f(x, y, z) \, d\sigma = \iint_R f(\mathbf{r}(u, v)) \, |\mathbf{r}_u \times \mathbf{r}_v| dA$
- Flux surface integral: $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iint_S \mathbf{F} \cdot d\boldsymbol{\sigma} = \iint_R \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA$
- Stokes' Theorem: If S is a piecewise smooth oriented surface bounded by a piecewise smooth curve C and \mathbf{F} is a vector field whose components have continuous partial derivatives on an open region containing S, then

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$$

• Divergence Theorem: If S is a piecewise smooth closed oriented surface enclosing a volume D and **F** is a vector field whose components have continuous partial derivatives on D, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \ dV.$$