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§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R? and R? as well. We said that a function r : R — R?
with r(f) = vt + ro produces a straight line when graphed.

its output is a vector. We graph a vector-valued function by plotting all of the

%‘ This is an example of a vector-valued function: its input is a real number ¢ and
terminal points of its output vectors, placing their initial points at the origin.

da tjf=v/.

2
You have seen several examples already: S \(j =
(#d0= Op + 65, = %
ok T A \[a,lw
%m\' w(,,a o of & ©° G250 (2%
e pe o Tlhod— e
Qo et bj e Oustpt /s

(ﬁ\;%(@: <oos 4 Stat > telk

NV

Given a fixed curve C' in space, producing a vector-valued function r whose graph is

C is Calledgwm ‘\'%‘\N‘}\ the curve C, and r is called a M&M
C.
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Example 10. Copsider_r;(t) = (cos(t),sin(t),t) and ro(t) = (cos(2t),sin(2t), 2t),
each with domain/ [0, 27]./What do you think the graph of each looks like? How are
they similar and how are they different?
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Check your intuition
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits: \} l‘b) = <‘t’; 2, Ll"b D r £zo0 Louce Curve-

Example 11. Compute %im<t2,2,ln(t)>. L t=e e ¥ K4
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And with continuity:

Example 12. Determine where the function r(t) = i — j +sin(?)k is contin-
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And with derivatives:

Example 13. If r(t) = (2t — 1 + 1,¢ — 1), find r'(¢).
-~ L ! = -
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Interpretation: If r(¢) gives the position of an object at time ¢, then

o I‘/(t) gives \f@iDD&:h‘] Jeed~! ok ‘\’W + CA\\F@‘&W\ Q (\"U@LM>

o [r'(1)] gives W oy ~iwe _(7 & i;!éf
O\, p
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o r(t) gives _ (el llovadon oF g F /

Let’s see this graphically g =0
Example 14. Find an equation of the tangent line to r(t) = (2t — 3t + 1,t — 1) at
time t = 2.

t=2
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Example 14. (cont.) Find an equation of the tangent line to r(t) = (2t—1t*+1,t—1)
at time ¢ = 2.

W)= (26-36%,6-D 4ok ()]
So ¢'l= nly g'w> = <2-%, 17
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And with integrals:

Example 15. Find fol(t,e2t,se02(t)> dt.
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At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

400

—200sin(2¢), 2 t),400 — —— .
(—200sin(2t), 200 cos(t), 400 1—|—t> m/s

v(t)

If he also knows that he started at the point r(0) = (0,0, 0),
use calculus to reconstruct his flight path. =—
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§13.3 Arc length of curves

We have discussed motion in space using by equations like r(t) = (z(t),y(t), 2(¢)).

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time ¢ is

S

r(t) = (2cos(t),2sin(t)),

where 0 <t < 27.

%\\"v—’ o
a) Sk%% the gr%ph of r(t). What shape is this?
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c) What is'the speed ||v(t)|| of the fly at time ¢?
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Definition 17. We say that the arc length of a smooth curve
r(t) = (x(t),y(t), 2(t)) from t7 O to 6= g that is traced out ex-

actly once is o j/\: lF‘l'&>“ OH:

Example 18| Set up an integral for|the arc length of the curve r(t) = ti + t%j + £’k
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Example 19. You try it/ Find the length of the portion of the curve in R? given
by the parametrization r(t) = (6sin(2t), 6 cos(2t), 5t), 0 < ¢ <.

Example 20. You try it! Find the length of the portion of the curve in R? given
by the parametrization r(t) = ti + %%k, 0 <t <8.

Check your intuition
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Example 19. You try it! Find the length of the portion of the curve in R? given

by the parametrization r(t) = (6sin(2t), 6 cos(2t), 5t), 0 < ¢ <.

He) = - £ ¢ \2001t, - 1282t 57
=\l uy oot Siize) 25 = |
=2 |Fk\=13

S,

(L L AN L
L«X?\\Tt’c\\ At-§0 24 = I3tf =

Check your intuition
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Example 20. You try it/ Find the length of the portion of the curve in R? given
by the parametrization r(t) = ti + %t?’/Qk, 0<t<8.

Check your intuition
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Example 20. You try it! Find the length of the portion of the curve in R? given
by the parametrization r(t) = ti+ 2t%?k, 0 <t < 8.
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Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time ¢, to an
arbitrary time ¢, which is given by the arc length function.

o b 5t 4T

We can use this function to produce parameterizations of curves where the parameter
s measures distance along the curve: the points where s,= 0 and s = 1 would be
exactly 1 unit of distance apart.
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Example 21. Find an arc length parameterization of the circle of radius 4 about

e origin in R?, r(¢) = (4 cos(t), 4sin(t)), . '(“
the origin in R*, r(f) = (4cos(t),4 (t)>;§t§2 cj/,s_-t\s ?
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Example 22. You try it/ Find (a) an arc length parameterization s(t) of the
curve C the portion of the helix of radius 4 in R* parameterized by r(t) =
(4 cos(t), 4sin(t), B‘b 0 <t < /2, and (b) use s¢] to find L the length of C

CO\B FW\A YZCQB lg> m'\mwhwﬁw.
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Example 22. You try it/ Find an arc length parameterization of,the portion of the
helix of radius 4 in R3 parametrized by r(t) = (4 cos(t), 4sin(t),3t),0 <t < 7/2.
) wse gty 6 fnd L T oy ok
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