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§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with
two vectors that orient the curve.
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First, we need the unit tangent vector, denoted T:
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Example 23. In Example 21 we found an arc length parameterization of the circle
of radius 4 centered at (0,0) in R?:

r(s) = <4cos <Z) ,4sin (Z)> : 0<s< 8.
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This is the direction of the principal unit normal, N(s) = &&
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We said last time that it is oftdn hard to find arc length parameterizationg, so what

do we do if we have a generic parameterization 1(Z)?/
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Example 24. Find T, N, « for the helix r(t) = (2 cos(t), 2sin(t),t — 1), t € R.
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Example 25. You try it/ Find T, N,  for the curve parametrized by

r(t) = (cost—i—tsmt) (sint — tcost +3k@ '67 O
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Example 25. You try it/ Find T, N, k for the curve parametrized by

r(t) = (cost +tsint)i+ (sint — tcost)j+ 3k, t € R.
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§14.1 Functions of Multiple Variables m*(:_:&r

Definition 26. A ‘E«rk(/ﬁ%—\ ot '+bbo Naw a9 is a rule that as-
signs to eachz '{'Q,e\b of real numbers (z,y) in aset D a M_‘\l&\g_&m‘-/‘
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denoted by f(z,y).
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Definition 29. If f is a function of two variables with domain D, then the graph
of f is the set of all points (x,%, 2) in R3 such that z = f(x,y) and (z,y) is in D.

Here are the graphs of the three functions above.
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Example 30. Suppose a small hill has height h(z,y) = 4 — sz — 1y2 m at each

point (z,y). How could we draw a picture that represents the hill in 2D?
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In 3D, it looks like this.
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Definition 31. The k\@\ sey (also called ContounS ) of a function

f of two variables are the curves with equations M, where £ is a

constant (in the range of f). A plot of (2~04sS  for various values of z is a

CoOxol ijL(or_‘QJQ/\S&'w‘O ).

Some common examples of these are:
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Example 32. Create a contour diagram of f(z,y) = 2% — y2? T":) e=o,\,U.
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Definition 32. The +m'c’6g of a surface are the curves of

s etk dn of the surface with planes parallel to the

Coorddrtre PNuay X-E pne oF Y- plne

Example 33. Use the traces and contours ¢f z = f(z,y) = 4 — 22 — 3* to sketch

the portion of its graph in the first octant.
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Let’s check our work: https://tinyurl.com/math2551-2var-graph é
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Definition 34. A C\AV\&‘“M ol S—uoe ‘\'W\D«S is a rule that

assigns to each “Z—wue\& of real numbers (z,y,z) in a set D a

_plguUe. Aukpaks denoted by f(z,y, 2).

f:D — R, where D C R?

We can still think about the domain and range of these functions. Instead of level
curves, we get level surfaces.
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Example 35. Describe the domain of the function f(z,y,z) =
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Example 36. Describe the level surfaces of the function g(x,y, z) = 22% + 3> + 22.
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