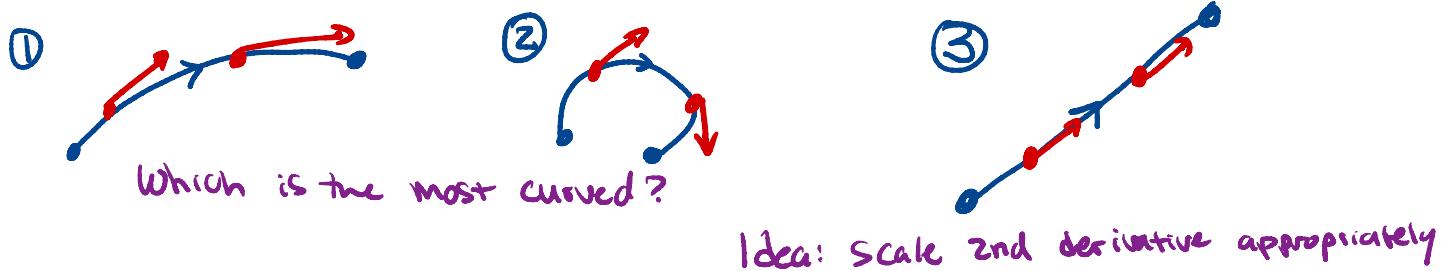


§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with two vectors that orient the curve.



First, we need the unit tangent vector, denoted \mathbf{T} :

- In terms of an arc-length parameter s : $\underline{\mathbf{r}'(s)}$
- In terms of any parameter t : $\underline{\mathbf{r}'(t)} / \|\mathbf{r}'(t)\|$

(done b/c
 $\|\mathbf{r}'(s)\| = 1$)
 if $\mathbf{r}(s)$ is an
 arc-length
 parametrization.

This lets us define the curvature, $\kappa(s) = \underline{\|\mathbf{T}'(s)\|}$

Unit Vector
 in the direction
 of travel
 (Unit velocity)
 vector.

What if $\mathbf{r}(t)$ isn't an
 arc-length parametrization?

Example 23. In Example 21 we found an arc length parameterization of the circle of radius 4 centered at $(0, 0)$ in \mathbb{R}^2 :

$$\mathbf{r}(s) = \left\langle 4 \cos\left(\frac{s}{4}\right), 4 \sin\left(\frac{s}{4}\right) \right\rangle, \quad 0 \leq s \leq 8\pi.$$

Use this to find $T(s)$ and $\kappa(s)$. **CHAIN** $\frac{d}{ds} \frac{s}{4} = \frac{1}{4}$

$$T(s) = \mathbf{r}'(s) = \left\langle 4 + \frac{1}{4} \sin\left(\frac{s}{4}\right), 4 + \frac{1}{4} \cos\left(\frac{s}{4}\right) \right\rangle$$

$$T(s) = \langle -\sin(s/4), \cos(s/4) \rangle$$

$T(s) = r'(s)$
 s was
an arc-length
parameter

$$(\text{check } \|r'(s)\| = \sqrt{\sin^2(s_1) + \cos^2(s_1)} = \sqrt{1} = 1 \quad \checkmark)$$

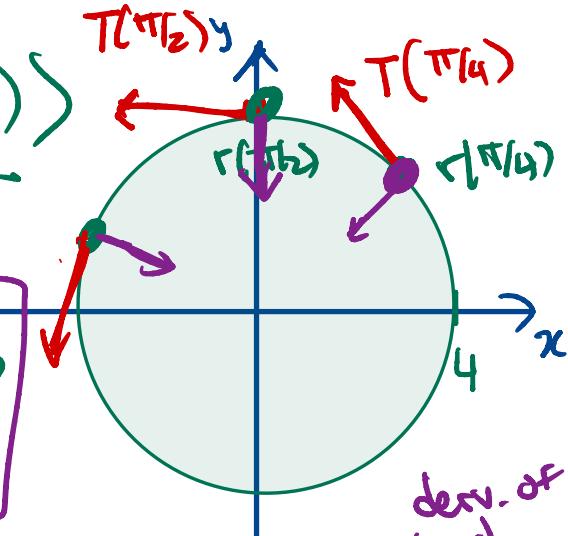
Now

$$T'(s) = \left\langle -\frac{1}{4} \cos(s/4), -\frac{1}{4} \sin(s/4) \right\rangle$$

$$\text{So } k(s) = \|T'(s)\| = \sqrt{\frac{1}{16} \cos^2(s_4) + \frac{1}{16} \sin^2(s_4)} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

$$\frac{T'(s)}{\|T'(s)\|} = \frac{\left\langle -\frac{1}{4} \cos(s/4), -\frac{1}{4} \sin(s/4) \right\rangle}{\sqrt{4}}$$

$$\frac{\mathbf{T}'(s)}{\|\mathbf{T}'(s)\|} = \langle -\cos(s/4), -\sin(s/4) \rangle$$



Question: In which direction is T changing?

This is the direction of the principal unit normal, $\mathbf{N}(s) =$

$$\frac{T'(s)}{\|T'(s)\|} \text{ is tangent}$$

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization $\mathbf{r}(t)$?

$$\bullet \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \quad \bullet \mathbf{N}(t) = \frac{\hat{\mathbf{T}}'(t)}{\|\hat{\mathbf{T}}'(t)\|}$$

$$\bullet \kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} \quad \text{or} \quad \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

Example 24. Find $\mathbf{T}, \mathbf{N}, \kappa$ for the helix $\mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t), t - 1 \rangle$, $t \in \mathbb{R}$.

Step 1: $\mathbf{r}'(t) = \langle -2 \sin t, 2 \cos t, 1 \rangle$

and $\|\mathbf{r}'(t)\| = \sqrt{4 \sin^2 t + 4 \cos^2 t + 1} = \sqrt{4 + 1} = \sqrt{5}$

Q: is $\mathbf{r}(t)$ an arc-length parameterization?

A: No, b/c $\|\mathbf{r}'(t)\| \neq 1$ ($\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ of $\mathbf{r}(t)$ w/8 are arc-length parameterizations)

Step 2:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{1}{\sqrt{5}} \langle -2 \sin t, 2 \cos t, 1 \rangle$$

$$\mathbf{T}(t) = \left\langle -\frac{2}{\sqrt{5}} \sin t, \frac{2}{\sqrt{5}} \cos t, \frac{1}{\sqrt{5}} \right\rangle$$

Step 3:

$$\mathbf{T}'(t) = \left\langle -\frac{2}{\sqrt{5}} \cos t, -\frac{2}{\sqrt{5}} \sin t, 0 \right\rangle$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

$$\|\mathbf{T}'(t)\| = 2/\sqrt{5} \quad \text{so} \quad \mathbf{N}(t) = \frac{1}{2/\sqrt{5}} \left\langle -\frac{2}{\sqrt{5}} \cos t, -\frac{2}{\sqrt{5}} \sin t, 0 \right\rangle$$

$$\mathbf{N}(t) = \langle -\cos t, -\sin t, 0 \rangle$$

Step 4:

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{2/\sqrt{5}}{\sqrt{5}} = \frac{2}{\sqrt{5}} * \frac{1}{\sqrt{5}} = \frac{2}{5}$$

Example 25. *You try it!* Find $\mathbf{T}, \mathbf{N}, \kappa$ for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t) \mathbf{i} + (\sin t - t \cos t) \mathbf{j} + 3\mathbf{k}, \quad t \in \mathbb{R} \quad t \geq 0$$

$$\begin{aligned} \mathbf{r}'(t) &= \langle -\sin t + t \cos t + \sin t, \cos t - (-t \sin t + \cos t), 0 \rangle \\ &= \langle t \cos t, t \sin t, 0 \rangle \end{aligned}$$

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

$$\|\mathbf{r}'(t)\| = \sqrt{t^2 \cos^2 t + t^2 \sin^2 t} = \sqrt{t^2} = t \quad (t \geq 0)$$

$$\text{So } \mathbf{T}(t) = \langle \cos t, \sin t, 0 \rangle$$

$$\text{Next, } \mathbf{T}'(t) = \langle -\sin t, \cos t, 0 \rangle$$

$$\|\mathbf{T}'(t)\| = 1$$

$$\text{So } \mathbf{N}(t) = \langle -\sin t, \cos t, 0 \rangle$$

and

$$K(t) = \frac{1}{t}$$

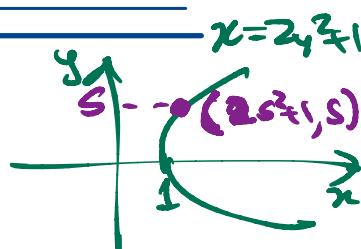
$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

$$K = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

IF fine: (?)
parametrization ✓

\mathbf{T}/\mathbf{F}

$\mathbf{r}(s) = \langle 2s^2 + 1, s \rangle, s \in \mathbb{R}$ is an arc-length
parametrization of the parabola



$$\begin{aligned} \text{Since } & \|\mathbf{r}'(s)\| = 1 \\ \text{so } & \|\mathbf{r}'(s)\| = \sqrt{16s^2 + 1} \neq 1. \end{aligned}$$

Example 25. *You try it!* Find $\mathbf{T}, \mathbf{N}, \kappa$ for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t) \mathbf{i} + (\sin t - t \cos t) \mathbf{j} + 3\mathbf{k}, \quad t \in \mathbb{R}.$$

Step 1 Find $\mathbf{r}'(t)$ and $\|\mathbf{r}'(t)\|$.

$$\begin{aligned} \mathbf{r}' &= \frac{d\mathbf{r}}{dt} = (-\sin t + t \cos t + \sin t) \mathbf{i} + (\cos t - (-t \sin t + \cos t)) \mathbf{j} + 0\mathbf{k} \\ &= t \cos t \mathbf{i} + t \sin t \mathbf{j} + 0\mathbf{k} \end{aligned}$$

$$\|\mathbf{r}'\|^2 = t^2 \cos^2 t + t^2 \sin^2 t = t^2 \quad \text{so} \quad \|\mathbf{r}'\| = |t|$$

$$\mathbf{T} = \frac{\mathbf{r}'}{\|\mathbf{r}'\|} = \cos t \mathbf{i} + \sin t \mathbf{j} + 0\mathbf{k}$$

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

$$\frac{d\mathbf{T}}{dt} = -\sin t \mathbf{i} + \cos t \mathbf{j} + 0\mathbf{k} \quad \& \quad \left| \frac{d\mathbf{T}}{dt} \right| = 1.$$

$$\text{so} \quad \mathbf{N} = \frac{d\mathbf{T}}{dt} = -\sin t \mathbf{i} + \cos t \mathbf{j} + 0\mathbf{k}$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

$$\kappa = \frac{1}{|t|}$$

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

IF time: (?)

T/F

$\hat{\mathbf{r}}(s) = \langle 2s^2 + 1, s \rangle$, $s \in \mathbb{R}$ is an arc-length parametrization of the parabola

$$x = 2y^2 + 1.$$

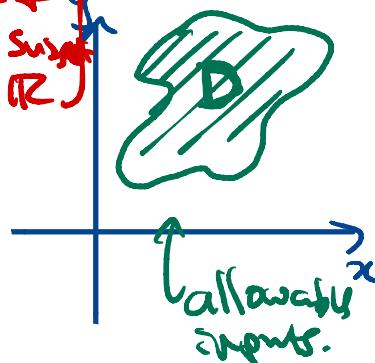
§14.1 Functions of Multiple Variables

single input variable
multiple output variables

Definition 26. A function of two variables is a rule that assigns to each 2-tuple of real numbers (x, y) in a set D a uniquely determined denoted by $f(x, y)$.

$f : D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^2$ codomain of f . range of f
is some subset of \mathbb{R} output.

D same subset of \mathbb{R}^2 consisting of all points you're allowed to plug into the function f . (The domain of f)



Example 27. Three examples are

$$(x, y, z) = (x, y, f(x, y))$$

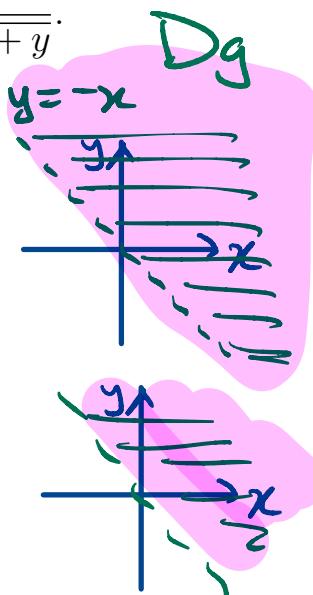
$$z = f(x, y) = x^2 + y^2, \quad g(x, y) = \ln(x + y), \quad h(x, y) = \frac{1}{\sqrt{x + y}}$$

Example 28. Find the largest possible domains of f , g , and h .

$$D_f \text{ can be } \mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$D_g \text{ need } x + y > 0$$

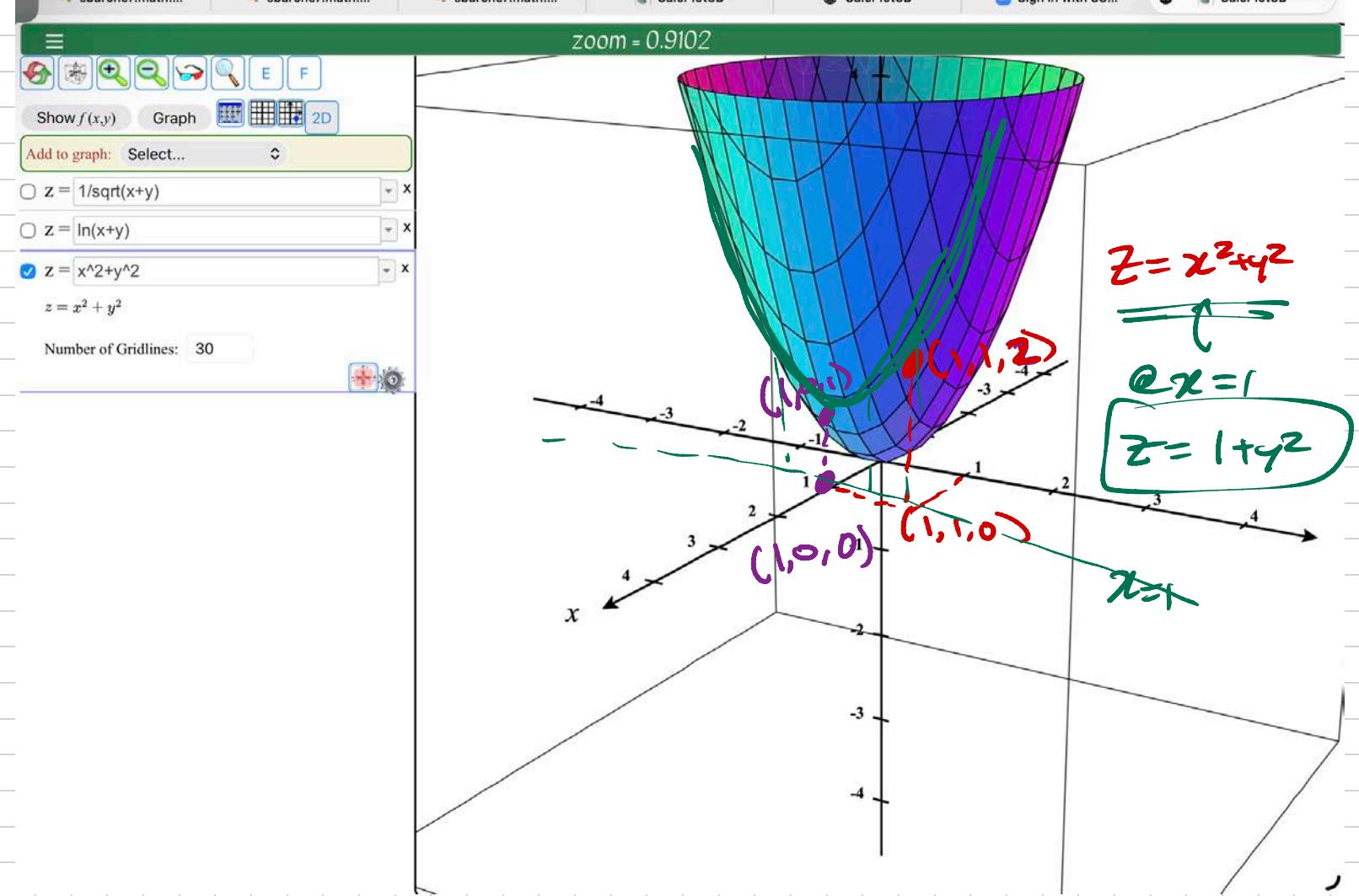
$$\begin{aligned} \text{so } D_g &= \{(x, y) \mid x + y > 0\} \\ &= \{(x, y) \mid y > -x\} \end{aligned}$$



$$D_h \text{ same need } x + y > 0 \quad D_h = D_g$$

Definition 29. If f is a function of two variables with domain D , then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that $z = f(x, y)$ and (x, y) is in D .

Here are the graphs of the three functions above.



Example 30. Suppose a small hill has height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ m at each point (x, y) . How could we draw a picture that represents the hill in 2D?

draw all points in the input space w/
a given height.

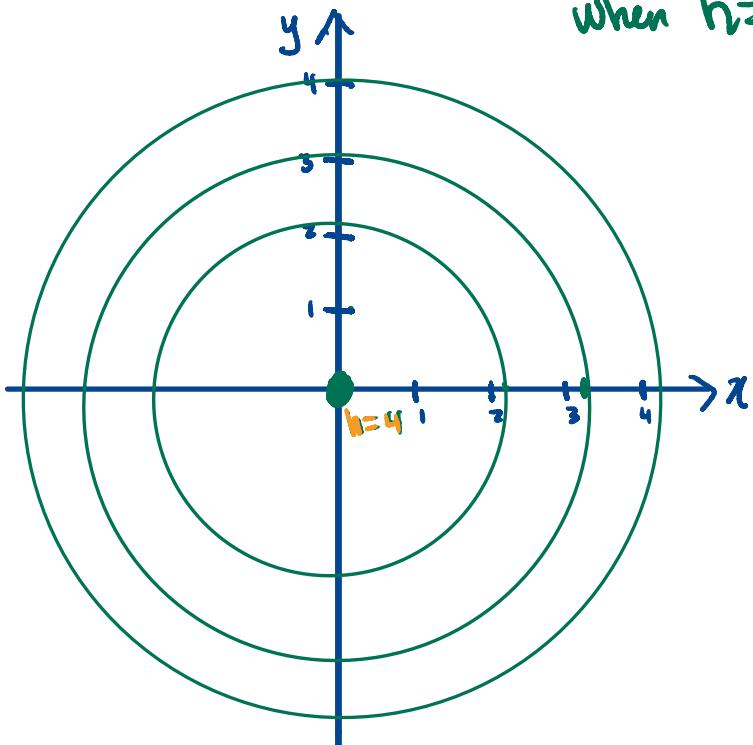
Solve for x, y

$$0 = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

$$\Rightarrow \frac{1}{4}x^2 + \frac{1}{4}y^2 = 4$$

$$\Rightarrow x^2 + y^2 = 16$$

Circle w/ center $(0, 0)$
& $r = 4$



when $h=0$

when $h=1$

$$1 = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

$$\Rightarrow \frac{1}{4}x^2 + \frac{1}{4}y^2 = 3$$

$$\Rightarrow x^2 + y^2 = 12$$

Circle w/ center $(0, 0)$

$$\sqrt{12} = 2\sqrt{3}$$

when $h=4$

$$4 = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

$$\Rightarrow x^2 + y^2 = 0$$

only happens at
 $(x, y) = (0, 0)$

when $h=2$

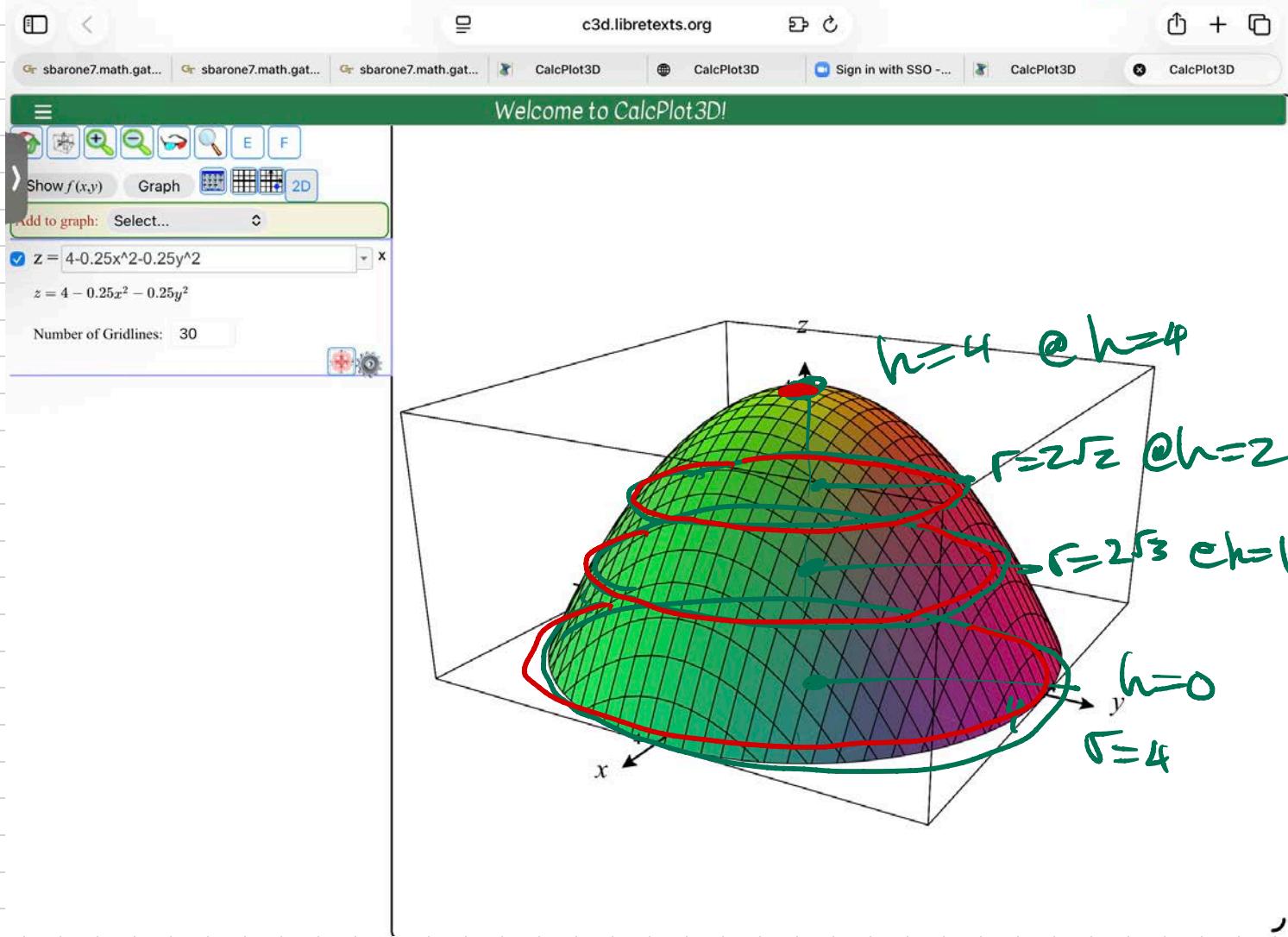
$$2 = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

$$\Rightarrow x^2 + y^2 = 8$$

Circle w/ center $(0, 0)$

$$r = 2\sqrt{2}$$

In 3D, it looks like this.

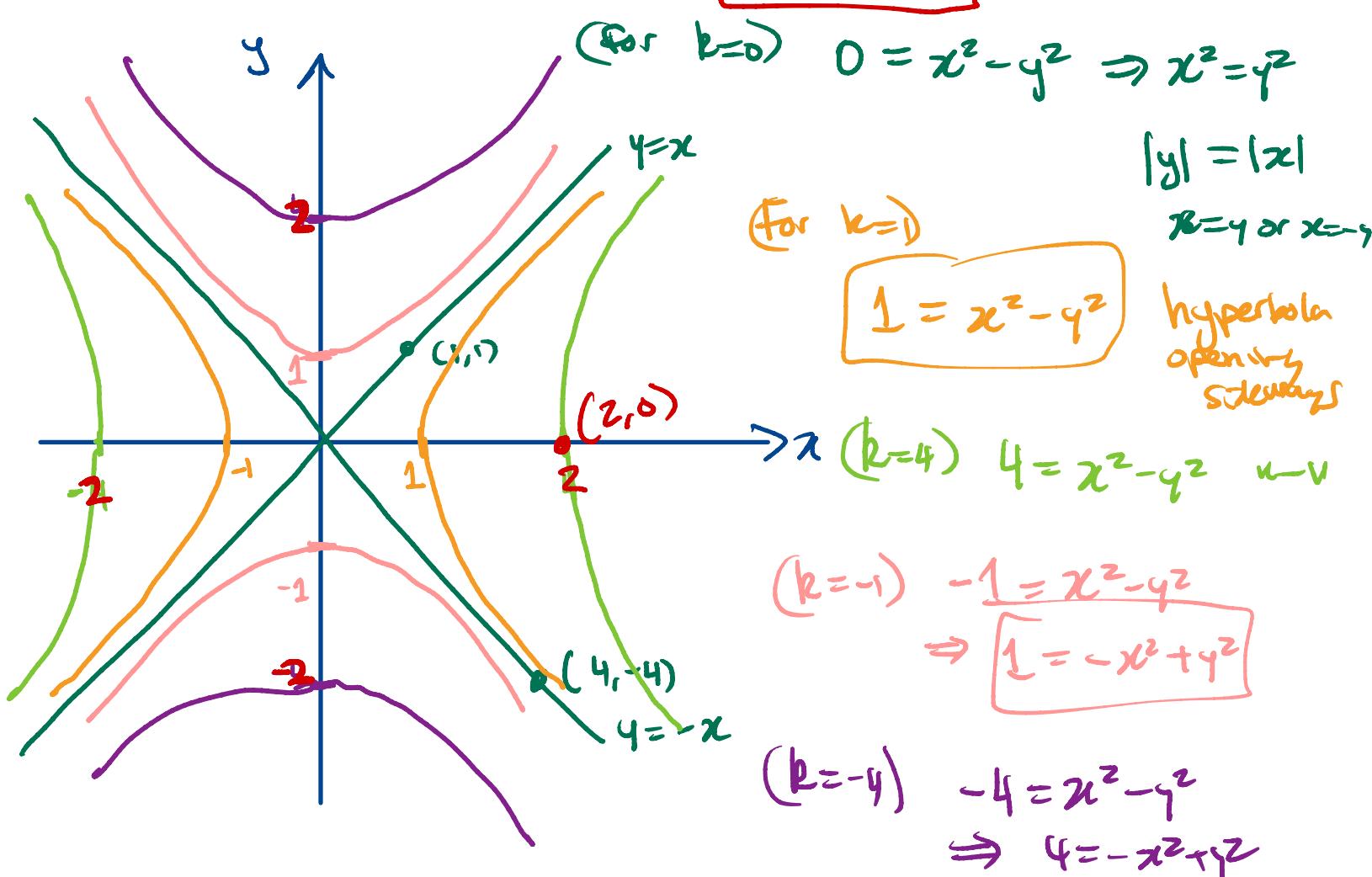


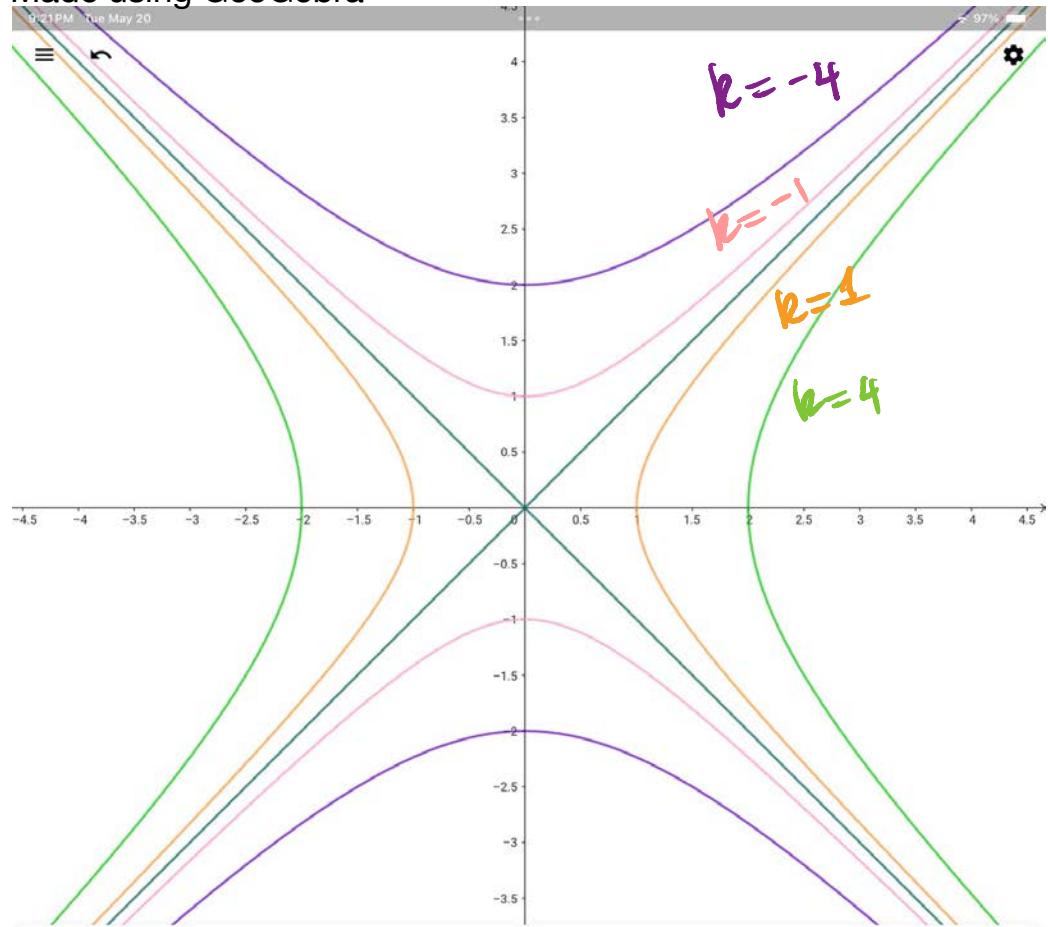
Definition 31. The level sets (also called contours) of a function f of two variables are the curves with equations $k = f(x, y)$, where k is a constant (in the range of f). A plot of contours for various values of z is a contour plot (or level set map).

Some common examples of these are:

- Maps topography (mountain maps)
- potential lines (electromagnetic potentials)
- depth charts.
- air pressure map.

Example 32. Create a contour diagram of $f(x, y) = x^2 - y^2$ Try $k=0, 1, 4$.





eq1 : $0 = x^2 - y^2$

eq2 : $1 = x^2 - y^2$

eq3 : $4 = x^2 - y^2$

eq4 : $-1 = x^2 - y^2$

eq5 : $-4 = x^2 - y^2$

Input...

...

...

...

...

...

GeoGebra Calculator Suite

Definition 32. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes x - z plane or y - z plane

Example 33. Use the traces and contours of $z = f(x, y) = 4 - 2x - y^2$ to sketch the portion of its graph in the first octant.

$$\Rightarrow (x \geq 0, y \geq 0, z \geq 0) \quad (x, y, z)$$

Contours are $z=k$ level sets.

$$\begin{aligned} \text{at } z=0 \text{ then } 0 &= 4 - 2x - y^2 \\ \Rightarrow x &= 2 - \frac{1}{2}y^2 \end{aligned}$$

$$\begin{aligned} \text{at } z=k > 0 \text{ then } k &= 4 - 2x - y^2 \\ \Rightarrow x &= \frac{4-k}{2} - \frac{1}{2}y^2 // \end{aligned}$$

traces w/ $y=k$

$$\text{IF } y=0, z=4-2x-0^2$$

$$\begin{aligned} \text{IF } y=1, z &= 4 - 2x - 1^2 \\ \Rightarrow z &= 3 - 2x \end{aligned}$$

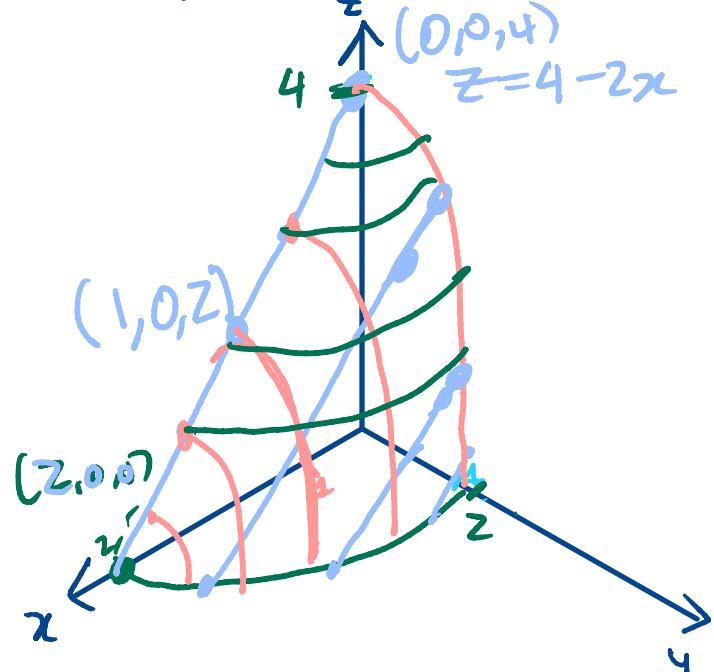
$$\begin{aligned} \text{IF } y=k > 0, z &= 4 - 2x - k^2 \\ \Rightarrow z &= (4-k^2) - 2x \end{aligned}$$

traces w/ $x=k$

$$\text{IF } x=0 \text{ then } z=4-2(0)-y^2 = 4-y^2$$

$$\text{IF } x=1, \text{ then } z=4-2(1)-y^2 = 2-y^2$$

$$\begin{aligned} \text{IF } x=k, \text{ then } z &= (4-2k) - y^2 \\ (k > 0) \end{aligned}$$



$$\begin{aligned} z &= 4 - 2x - y^2 & (2, 0, 0) & \checkmark \\ & & (1, 0, 1) & \checkmark \\ & & (0, 0, 4) & \checkmark \end{aligned}$$

Definition 34. A function of 3-variables is a rule that assigns to each 3-tuple of real numbers (x, y, z) in a set D a unique output denoted by $f(x, y, z)$.

$\overbrace{\quad \quad \quad}^{\leftarrow \text{The function evaluated at } (x, y, z)}$

$$f : D \rightarrow \mathbb{R}, \text{ where } D \subseteq \mathbb{R}^3$$

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 35. Describe the domain of the function $f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}$.

$$\text{Need } 4 - x^2 - y^2 - z^2 \neq 0$$

$$\text{So avoid } 4 - x^2 - y^2 - z^2 = 0$$

$$\Rightarrow x^2 + y^2 + z^2 = 4 \quad \left(\begin{array}{l} \text{eqn. of a sphere} \\ \text{centered } (0, 0, 0) \\ \text{w/ } r = 2. \end{array} \right)$$

Domain of f

$$D = \{ (x, y, z) \mid x^2 + y^2 + z^2 \neq 4 \}$$

Example 36. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.

$\overbrace{\quad \quad \quad}^{\leftarrow \text{(output variable) } \downarrow \text{ constant}}$

Set $g(x, y, z) = k$ (constant) \Leftrightarrow describe resulting

set of points (x, y, z)

e.g. $k=0$ $0 = 2x^2 + y^2 + z^2$ only true if $(x, y, z) = (0, 0, 0)$

$k=1$ $1 = 2x^2 + y^2 + z^2$ implicitly defined surface in \mathbb{R}^3 .

$k=2$ $2 = 2x^2 + y^2 + z^2$
larger ellipsoid



ellipsoid