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§13.1 Curves in Space & Their Tangents
The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R2 and R3 as well. We said that a function r : R � R3

with r(t) = vt+ r0 produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number t and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function r whose graph is

C is called the curve C, and r is called a of

C.
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Example 10. Consider r1(t) = hcos(t), sin(t), ti and r2(t) = hcos(2t), sin(2t), 2ti,
each with domain [0, 2`]. What do you think the graph of each looks like? How are
they similar and how are they di↵erent?

Check your intuition
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute lim
t�e

ht2, 2, ln(t)i.

And with continuity:

Example 12. Determine where the function r(t) = ti1 1

t2 1 4
j+ sin(t)k is contin-

uous.
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And with derivatives:

Example 13. If r(t) = h2t1 1
2t

2 + 1, t1 1i, find r!(t).

Interpretation: If r(t) gives the position of an object at time t, then

• r!(t) gives

• |r!(t)| gives

• r!!(t) gives

Let’s see this graphically

Example 14. Find an equation of the tangent line to r(t) = h2t1 1
2t

2 + 1, t1 1i at
time t = 2.
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Example 14. (cont.) Find an equation of the tangent line to r(t) = h2t11
2t

2+1, t11i
at time t = 2.
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And with integrals:

Example 15. Find
R 1
0 ht, e

2t
, sec2(t)i dt.

At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

v(t) = h1200 sin(2t), 200 cos(t), 4001 400

1 + t
i m/s.

If he also knows that he started at the point r(0) = h0, 0, 0i,
use calculus to reconstruct his flight path.
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§13.3 Arc length of curves

We have discussed motion in space using by equations like r(t) = hx(t), y(t), z(t)i.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time t is

r(t) = h2 cos(t), 2 sin(t)i,

where 0  t  2⇡.

a)Sketch the graph of r(t). What shape is this?

b)How far does the fly travel between t = 0 and t = ⇡?

c)What is the speed kv(t)k of the fly at time t?

d)Compute the integral

Z ⇡

0
kv(t)k dt. What do you notice?
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Definition 17. We say that the arc length of a smooth curve

r(t) = hx(t), y(t), z(t)i from to that is traced out ex-

actly once is

L =

Example 18. Set up an integral for the arc length of the curve r(t) = ti+ t2j+ t3k
from the point (1, 1, 1) to the point (2, 4, 8).
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Example 19. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = h6 sin(2t), 6 cos(2t), 5ti, 0  t  ⇡.

Check your intuition
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Example 19. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = h6 sin(2t), 6 cos(2t), 5ti, 0  t  ⇡.

Check your intuition
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Example 20. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ti+ 2

3t
3/2k, 0  t  8.

Check your intuition



§13.3 Page 21

Example 20. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ti+ 2

3t
3/2k, 0  t  8.

Check your intuition
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Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t0 to an
arbitrary time t, which is given by the arc length function.

s(t) =

We can use this function to produce parameterizations of curves where the parameter
s measures distance along the curve: the points where s = 0 and s = 1 would be
exactly 1 unit of distance apart.
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Example 21. Find an arc length parameterization of the circle of radius 4 about
the origin in R2, r(t) = h4 cos(t), 4 sin(t)i, 0  t  2⇡.
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Example 22. You try it! Find (a) an arc length parameterization s(t) of the
curve C, the portion of the helix of radius 4 in R3 parameterized by r(t) =
h4 cos(t), 4 sin(t), 3ti, 0  t  ⇡/2, and (b) use s(t) to find L the length of C
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Example 22. You try it! Find an arc length parameterization of the portion of the
helix of radius 4 in R3 parametrized by r(t) = h4 cos(t), 4 sin(t), 3ti, 0  t  ⇡/2.


