

§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-dimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r} : \mathbb{R} \rightarrow \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is C is called _____ the curve C , and \mathbf{r} is called a _____ of C .

Example 10. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?

[Check your intuition](#)

§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute $\lim_{t \rightarrow e} \langle t^2, 2, \ln(t) \rangle$.

And with continuity:

Example 12. Determine where the function $\mathbf{r}(t) = t\mathbf{i} - \frac{1}{t^2 - 4}\mathbf{j} + \sin(t)\mathbf{k}$ is continuous.

And with derivatives:

Example 13. If $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$, find $\mathbf{r}'(t)$.

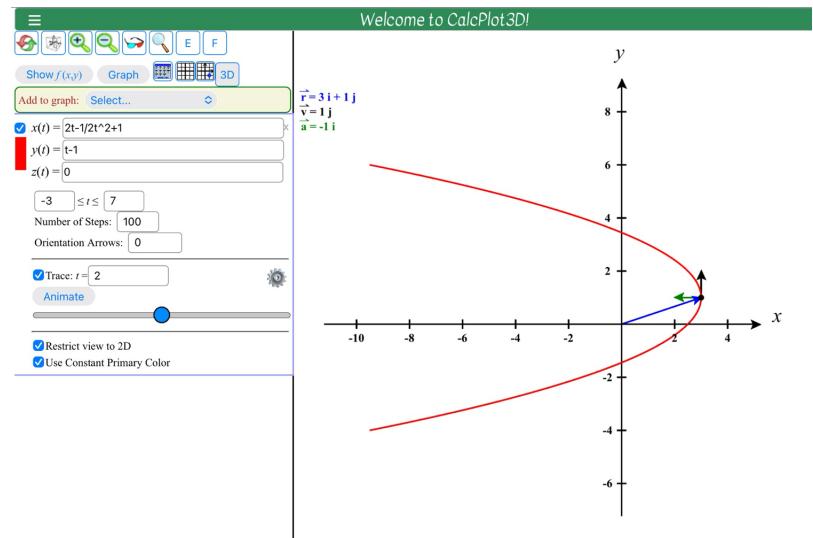
Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t , then

- $\mathbf{r}'(t)$ gives _____
- $|\mathbf{r}'(t)|$ gives _____
- $\mathbf{r}''(t)$ gives _____

Let's see this graphically

Example 14. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time $t = 2$.

Example 14. (cont.) Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time $t = 2$.



And with integrals:

Example 15. Find $\int_0^1 \langle t, e^{2t}, \sec^2(t) \rangle \, dt$.

At this point we can solve initial-value problems like those we did in single-variable calculus:

Example 16. Wallace is testing a rocket to fly to the moon, but he forgot to include instruments to record his position during the flight. He knows that his velocity during the flight was given by

$$\mathbf{v}(t) = \langle -200 \sin(2t), 200 \cos(t), 400 - \frac{400}{1+t} \rangle \text{ m/s.}$$

If he also knows that he started at the point $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, use calculus to reconstruct his flight path.

§13.3 Arc length of curves

We have discussed motion in space using by equations like $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time t is

$$\mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle,$$

where $0 \leq t \leq 2\pi$.

a) Sketch the graph of $\mathbf{r}(t)$. What shape is this?

b) How far does the fly travel between $t = 0$ and $t = \pi$?

c) What is the speed $\|\mathbf{v}(t)\|$ of the fly at time t ?

d) Compute the integral $\int_0^\pi \|\mathbf{v}(t)\| dt$. What do you notice?

Definition 17. We say that the **arc length** of a smooth curve

$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ from _____ to _____ that is traced out exactly once is

$$L = \text{_____}$$

Example 18. Set up an integral for the arc length of the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ from the point $(1, 1, 1)$ to the point $(2, 4, 8)$.

Example 19. *You try it!* Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = \langle 6 \sin(2t), 6 \cos(2t), 5t \rangle$, $0 \leq t \leq \pi$.

Example 19. *You try it!* Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = \langle 6 \sin(2t), 6 \cos(2t), 5t \rangle$, $0 \leq t \leq \pi$.

Example 20. *You try it!* Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{k}$, $0 \leq t \leq 8$.

Example 20. *You try it!* Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{k}$, $0 \leq t \leq 8$.

Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t_0 to an arbitrary time t , which is given by the **arc length function**.

$$s(t) = \underline{\hspace{10em}}$$

We can use this function to produce parameterizations of curves where the parameter s measures distance along the curve: the points where $s = 0$ and $s = 1$ would be exactly 1 unit of distance apart.

Example 21. Find an arc length parameterization of the circle of radius 4 about the origin in \mathbb{R}^2 , $\mathbf{r}(t) = \langle 4 \cos(t), 4 \sin(t) \rangle$, $0 \leq t \leq 2\pi$.

Example 22. *You try it!* Find (a) an arc length parameterization $s(t)$ of the curve \mathcal{C} , the portion of the helix of radius 4 in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$, $0 \leq t \leq \pi/2$, and (b) use $s(t)$ to find L the length of \mathcal{C}

Example 22. *You try it!* Find an arc length parameterization of the portion of the helix of radius 4 in \mathbb{R}^3 parametrized by $\mathbf{r}(t) = \langle 4 \cos(t), 4 \sin(t), 3t \rangle$, $0 \leq t \leq \pi/2$.