

§14.2 Limits & Continuity

Definition 37. What is a limit of a function of two variables?

DEFINITION We say that a function $f(x, y)$ approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write

$$\lim_{(x, y) \rightarrow (x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f ,

$$|f(x, y) - L| < \epsilon \quad \text{whenever} \quad 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta.$$

We won't use this definition much: the big idea is that $\lim_{(x, y) \rightarrow (x_0, y_0)} f(x, y) = L$ if and only if $f(x, y)$ _____ regardless of how we approach (x_0, y_0) .

Definition 38. A function $f(x, y)$ is **continuous** at (x_0, y_0) if

1. _____

2. _____

3. _____

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function.

Example 39. Evaluate $\lim_{(x,y) \rightarrow (2,0)} \frac{\sqrt{2x-y} - 2}{2x-y-4}$, if it exists.

Example 40. *You try it!* Evaluate $\lim_{(x,y) \rightarrow (\frac{\pi}{2}, 0)} \frac{\cos y + 1}{y - \sin x}$, if it exists.

Example 40. *You try it!* Evaluate $\lim_{(x,y) \rightarrow (\frac{\pi}{2}, 0)} \frac{\cos y + 1}{y - \sin x}$, if it exists.

Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before.

Big Idea: Limits can behave differently along different paths of approach

Example 41. Evaluate $\lim_{(x,y) \rightarrow (0,0)} \frac{x^2}{x^2 + y^2}$, if it exists. Here is its graph.

This idea is called the **two-path test**:

If we can find _____ to (x_0, y_0) along which _____ takes on two different values, then _____.

Example 42. Show that the limit

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^2y}{x^4 + y^2}$$

does not exist.

Example 43. *You try it!* Show that the limit $\lim_{(x,y) \rightarrow (0,0)} \frac{x^4}{x^4 + y^2}$ is DNE by using the two-path test.

Example 43. *You try it!* Show that the limit $\lim_{(x,y) \rightarrow (0,0)} \frac{x^4}{x^4 + y^2}$ is DNE by using the two-path test.

Example 44. [Challenge:] Show that the limit

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^4 y}{x^4 + y^2}$$

does exist using the Squeeze Theorem.

Theorem 45 (Squeeze Theorem). *If $f(x, y) = g(x, y)h(x, y)$, where $\lim_{(x,y) \rightarrow (a,b)} g(x, y) = 0$ and $|h(x, y)| \leq C$ for some constant C near (a, b) , then $\lim_{(x,y) \rightarrow (a,b)} f(x, y) = 0$.*

Math 2551 Worksheet 8 - Review for Exam 1

1. Set up the integral to find the arc length of the curve $y = e^x$ from the point $(0, 1)$ to the point $(1, e)$. Focus on finding a parameterization, and on what values of t give these two points. Is this an integral you would want to compute? Why or why not?
2. Parameterize the line tangent to the curve

$$\mathbf{r}(t) = \langle \cos^2(t), \sin(t) \cos(t), \cos(t) \rangle$$

at the point where $t = \pi/2$.

3. Compute the unit tangent vector $\mathbf{T}(t)$ and the unit normal vector $\mathbf{N}(t)$ to the circle

$$\mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle.$$

Before checking, should the normal vector be pointing into or out of the circle? Why?

4. We have seen that the curvature of a circle with radius a is $1/a$. Thinking about the geometry of a helix with radius a , do you think its curvature will be greater than or less than $1/a$? Why? Compute the curvature using the parameterization

$$\mathbf{r}(t) = \langle a \cos(t), t, a \sin(t) \rangle$$

to confirm or challenge your intuition.

5. The function $\ell(t)$ below describes a line. There is a particular plane that $\ell(t)$ is normal to at the point $t = 0$. Find an equation of this plane.

$$\ell(t) = \langle 3 - 3t, 2 + t, -2t \rangle.$$

Where does this line intersect the different plane $3x - y + 2z = -7$?

6. Find and sketch the domain of each of the following functions of two variables:

- $\sqrt{9 - x^2} + \sqrt{y^2 - 4}$
- $\arcsin(x^2 + y^2 - 2)$
- $\sqrt{16 - x^2 - 4y^2}$

7. Solve the differential equation below, together with its given initial conditions. Remember that this means finding all functions $\mathbf{r}(t)$ which satisfy the given equations.

$$\mathbf{r}''(t) = 2\mathbf{i} + 6t\mathbf{j} + \frac{1}{2\sqrt{t}}\mathbf{k}, \quad \mathbf{r}'(1) = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}, \quad \mathbf{r}(1) = \mathbf{i} + \mathbf{j}$$

8. Let $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$. Is it possible to define $f(0, 0)$ in a way that makes f continuous at the origin? Why?