MATH 2551 GT-E Midterm 3 VERSION B Summer 2025

COVERS SECTIONS 15.5-15.8, 16.1-16.8

	Kar	
Full name:	Ned	GT ID:
		- -

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I do not have a phone within reach, and I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.

() All of the knowledge presented in this exam is entirely my own. I am initialing to the left to attest to my integrity.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You have 75 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work [J] and annotate your work using proper notation [N].
- Good luck!

Question	Points
1	2
2	2
3	2
4	8
5	6
6	10
7	8
8	12
Total:	50

[A]

For problems 1-2 choose whether each statement is true or false. If the statement is *always* true, pick true. If the statement is *ever* false, pick false. For all problems on this page please be sure to neatly fill in the bubble corresponding to your answer choice. [A]

- 1. (2 points) If \mathbf{F} is any vector field and C is a closed simple loop in \mathbb{R}^2 , then the circulation of \mathbf{F} around C traversed in one orientation is the negative of the circulation of \mathbf{F} around C traversed in the opposite orientation.
 - lacktriangle TRUE igcirc FALSE
- 2. (2 points) If C is a curve with parametrization $\mathbf{r}_1(t) = \langle x(t), y(t) \rangle$ with $t \in [a, b]$, then the parametrization $\mathbf{r}_2(t) = \mathbf{r}_1(-t)$ with $t \in [a, b]$ is also a parametrization of C with the opposite orientation.
- 3. (2 points) If g(x,y) is strictly positive at all points in \mathbb{R}^2 , then

$$\iint_{R_1} g(x,y) \, dA \ge \iint_{R_2} g(x,y) \, dA$$

if the area of R_1 is larger than the area of R_2 .

 \bigcirc TRUE lacktriangle FALSE

[A]

For problems 1-2 choose whether each statement is true or false. If the statement is *always* true, pick true. If the statement is *ever* false, pick false. For all problems on this page please be sure to neatly fill in the bubble corresponding to your answer choice. [A]

- 1. (2 points) If C_1 and C_2 are two curves with the same starting point and ending point, then $\int_{C_1} \nabla f \cdot \mathbf{T} \, ds = \int_{C_2} \nabla f \cdot \mathbf{T} \, ds$.
- 2. (2 points) If C is a curve with parametrization $\mathbf{r}_1(t) = \langle x(t), y(t) \rangle$ with $t \in [a, b]$, then the parametrization $\mathbf{r}_2(t) = \mathbf{r}_1(-t)$ with $t \in [a, b]$ is also a parametrization of C with the opposite orientation.
 - TRUE **►** FALSE
- 3. (2 points) If g(x,y) is strictly positive at all points in \mathbb{R}^2 , then

$$\iint_{B_1} g(x,y) dA = \iint_{B_2} g(x,y) dA$$

if the area of R_1 is equal to the area of R_2 .

 \bigcirc TRUE \bigcirc FALSE

4. (8 points) In this problem you will compute the integral

$$M = \iint_R (x+y)e^{x^2-y^2} dx dy$$

- (a) On the axes provided, sketch the new region of integration G in the uv-plane. [A]
- (b) Solve the transformation equations for x and y in terms of u and v and compute the Jacobian determinant, i.e., find $\mathbf{T}(u,v)$ and $|\det D\mathbf{T}(u,v)|$. [AJN]
- (c) Evaluate the double integral using a change of variables and your results from parts (a) and (b) to find the value of M. Hint: integrate with the area element $du \, dv$. [AJN]

$$T[x] = \begin{bmatrix} x-9 \\ x+y \end{bmatrix}$$

$$A = \begin{bmatrix} 1-1 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1-1 \\ 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

(C)
$$M = \iint_{R} (x_{+}y) e^{x^{2}-y^{2}} \frac{1}{2} dx dy = \frac{1}{2} \int_{0}^{2} \int_{0}^{1} v e^{uv} du dv$$

$$= \frac{1}{2} \int_{0}^{2} v * \frac{1}{v} e^{uv} \Big|_{0}^{1} dv = \frac{1}{2} \int_{0}^{2} e^{v} - 1 dv = e^{v} - v \Big|_{0}^{2}$$

$$= \frac{1}{2} \Big[(e^{2} - 2) - (1 - 0) \Big] = \frac{1}{2} (e^{2} - 3)$$

- 5. (6 points) Let D be the smaller cap cut from a solid ball of radius 1 units by the plane $z = \sqrt{3}/2$. The point $P(-\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$ is on D at the intersection of the ball and the plane.
 - (a) Find the spherical coordinates (ρ, φ, θ) of the point $P(-\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$. [AN]
 - (b) Express the volume of D as an iterated triple integral in spherical coordinates. Do not evaluate! [AN]

- 6. (10 points) This problem will have you compute the flux of the vector field $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j}$ through S the open ended circular cylinder of radius 5 and height 3 with its base on the xy-plane and centered about the z-axis, oriented away from the z-axis. [AJN]
 - (a) Set up and evaluate a surface integral which computes the flux of \mathbf{F} through S.
 - (b) Why can we not evaluate a line integral over the boundary C to obtain the result of part (using Stokes' Theorem? Use at least one or two complete sentences to answer.

S:
$$\Gamma(0,2) = \langle 5\cos\theta, 5\sin\theta, 2 \rangle$$

 $\theta \in [0,2\pi], 2 \in [0,3)$

$$r_0 = \langle -5\sin\theta, 5\cos\theta, 0 \rangle$$
 $r_2 = \langle 0,0,1 \rangle$

So
$$Flux = \int_{0}^{2\pi} \int_{0}^{3} \langle 5\cos\theta, 5\sin\theta, o \rangle \cdot \langle 5\cos\theta, 5\cos\theta, o \rangle dz d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{3} 25 \cos^{2}\theta + 25 \sin^{2}\theta \, dt \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{3} 25 \, dz \, d\theta = \int_{0}^{2\pi} 25 = \int_{0}^{3} d\theta = \int_{0}^{2\pi} 75 \pi \, d\theta$$

(b) Stokes Theorem helps to calculate the flux across S of the and of F, not F. Also, C the boundary of S is two disjoint curves.

- 7. (8 points) Consider the vector field $\mathbf{F} = \langle zx, zy, z \rangle$ and the surface S consisting of the portion of the paraboloid $z = 4 x^2 y^2$ with $z \geq 0$ together with the circular disk $x^2 + y^2 \leq 4$ in the xy-plane, oriented with normal vectors away from the origin. [AJN]
 - (a) Use the Divergence Theorem to set up a triple iterated integral over the region D which is enclosed by S, which evaluates to the same value as $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

 Do not evaluate!
 - (b) Is there a vector field \mathbf{G} such that $\mathbf{F} = \nabla \times \mathbf{G}$? Explain in one or two complete sentences how you know.

D: $Q \in (0,2\pi)$, $r \in [0,2]$, $z \in [0,4-r^2]$

 $div F = P_{x+}Q_{y+}R_{z}$ = $Z+Z+1=Z_{z+1}$

(a) Flux = SSSFondr = SSSD divEdV

 $= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} (2z+1) * r dz dr d\theta$

(b) Stokes' Theorem helps to evaluate $S_g J \times F_o n d J$, the Flux of the curl of F. Note: Even though the boundary C of S is two disjoint curves, this is actually not an issue (although it makes evaluation of $S_c F_o d r$ more cumbersome).

- 8. (12 points) Consider the vector field $\mathbf{F} = \langle x+2,y \rangle$ and the curve C which is the circle $x^2+y^2=25$ oriented counterclockwise with outward pointing normal vector. [AJN]
 - (a) Compute the flow of F around T, which is $\int_C F \cdot \mathbf{T} ds$, using Green's Theorem.
 - (b) Compute the flux of F around T, which is $\int_C F \cdot \mathbf{n} \, ds$, with or without using Green's Theorem. Use either method, but you can use the other integral to check your answer.
 - (c) Is F conservative? Explain in at least one or two complete sentences how you know. If you need more room, please use the next page and leave a note at the bottom of this page.

Since CuriF = <0,0, Qx-Py> for 20 vector freeds.

(b)
$$Flux = \int_{c} F \cdot n ds$$
 $\Gamma(t) = \langle 5cost, 5sint \rangle telo, 2\pi \rangle$
 $\Gamma'(t) = \langle -5sint, 5cost \rangle n \sim \langle 5cost, 5sint \rangle$

Flux =
$$\int_0^{2\pi} \langle 5\cos t + 2.5\sin t \rangle \cdot \langle 5\cos t.5\sin t \rangle dt$$

= $\int_0^{2\pi} 25\cos^2 t + 10\cos t + 25\sin^2 t dt = \int_0^{2\pi} 25 + 10\cos t dt$
= $25t + 10\sin t \Big|_0^{2\pi} = 50\pi + 0 - (0 + 0) = 50\pi$

Check w/ GT. GT

Flux =
$$\int_{0}^{2\pi} \int_{0}^{5} \int_{0}^{5} (1+1) T + dT d\theta$$

= $\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{5} d\theta = \int_{0}^{2\pi} \int_{0}^{5} d\theta = 250 \int_{0}^{2\pi} = 50\pi$

(0)
$$F$$
 is conservative since curl F =0. Also, $f = \frac{1}{2}x^2 + 2x + \frac{1}{2}y^2$ is an easy potential Function for F .

If you need more room on the previous problem please use this page and indicate it at the bottom of the previous page.

FORMULA SHEET

- Trig identities: $\sin^2(x) = \frac{1}{2}(1 \cos(2x)), \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- Volume(D) = $\iiint_D dV$, $f_{avg} = \frac{\iiint_D f(x, y, z) dV}{\text{volume of } D}$ or $\frac{\int_C f(x, y, z) ds}{\text{length of } C}$, Mass: $M = \iiint_D \delta dV$
- Cylindrical coordinates: $x = r\cos(\theta)$, $y = r\sin(\theta)$, z = z, $dV = r dz dr d\theta$
- Spherical coordinates: $x = \rho \sin(\phi) \cos(\theta)$, $y = \rho \sin(\phi) \sin(\theta)$, $z = \rho \cos(\phi)$, $dV = \rho^2 \sin(\phi) d\rho d\phi d\theta$
- Substitution for double integrals: If R is the image of G under a coordinate transformation $\mathbf{T}(u,v) = \langle x(u,v), y(u,v) \rangle$ then

$$\iint_{B} f(x,y) \ dx \ dy = \iint_{G} f(\mathbf{T}(u,v)) |\det D\mathbf{T}(u,v)| \ du \ dv.$$

- Scalar line integral: $\int_C f(x, y, z) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$
- Tangential vector line integral: $\int_C \mathbf{F} \cdot \mathbf{T} \ ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \ dt$
- Normal vector line integral: $\int_C \mathbf{F}(x,y) \cdot \mathbf{n} \ ds = \int_C P \ dy Q \ dx = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle y'(t), -x'(t) \rangle \ dt$.
- Fundamental Theorem of Line Integrals: $\int_C \nabla f \cdot d\mathbf{r} = f(B) f(A)$ if C is a path from A to B
- Curl (Mixed Partials) Test: $\mathbf{F} = \nabla f$ if curl $\mathbf{F} = \mathbf{0} \Leftrightarrow P_z = R_x, Q_z = R_y$, and $Q_x = P_y$.
- $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$ div $\mathbf{F} = \nabla \cdot \mathbf{F}$ curl $\mathbf{F} = \nabla \times \mathbf{F}$
- ullet Green's Theorem: If C is a simple closed curve with positive orientation and R is the simply-connected region it encloses, then

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \ ds = \iint_{R} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \ dA \qquad \qquad \int_{C} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{R} (\nabla \cdot \mathbf{F}) \ dA.$$

- Surface Area= $\iint_S 1 \ d\sigma$
- Scalar surface integral: $\iint_S f(x, y, z) d\sigma = \iint_R f(\mathbf{r}(u, v)) |\mathbf{r}_u \times \mathbf{r}_v| dA$
- Flux surface integral: $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iint_S \mathbf{F} \cdot d\boldsymbol{\sigma} = \iint_R \mathbf{F}(\mathbf{r}(u,v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \ dA$
- Stokes' Theorem: If S is a piecewise smooth oriented surface bounded by a piecewise smooth curve C and F is a vector field whose components have continuous partial derivatives on an open region containing S, then

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \ ds = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma.$$

• Divergence Theorem: If S is a piecewise smooth closed oriented surface enclosing a volume D and F is a vector field whose components have continuous partial derivatives on D, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \ dV.$$

SCRATCH PAPER - PAGE LEFT BLANK