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§14.3: Partial Derivatives
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Goal: Describe how a function of two (or three, later) variables is changing at a

point (a, b).
Example 47. Let’s go back to our example of the small hill that has height

1 1
h(z,y) =4 - 15’72 - 192

meters at each point (z,y). If we are standing on the hill at the point with
(2,1,11/4), and walk due north (the positive y-direction), at what rate will our
height change? What if we walk due east (the positive x-direction)?
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Let’s investigate graphically.
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Definition 48. If f is a function of two variables z and y, its __ 4 ¢ \\m\&\)\l“’y

are the functions f, and f, defined by
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Example 49. Find f,(1,2) and f,(1,2) of the functions below. (SL) -
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Question: How would you define the second partial derivatives?
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What do you notice about f,, and f,, in the previous example?

Theorem 51 (Clairaut’s Theorem). Suppose f is defined on a disk D that contains
the point (a,b). If the functions f, f, fy, foy, fyz are all continuous on D, then
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Example 52. You try it/ What about functions of three variables? How many

partial derivatives should f(z,y, 2) = 2zyz — 2%y have? Compute them.
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Example 53. How many rates of change should the function f(s,t) =
st
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So, we computed partial derivatives. How might we organize this information?
fl X1,
For any function f : R" — R™ having the form f(z1,...,2,) = E\\l\
m ECITe .y

we have L inputs, ML output, and XV partial derivatives, which

we can use to form the total derivative.

This is a \\}.&( . map from R” — R™, denoted D f, and we can represent it
with an fsn e Tp , with one column per input and one row per output.
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Example 54. You try it/ Find the total derivatives of each function:

a) f(z) =a2?+1
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d) f(z,y,2) = 2zyz — 2%y
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What does it mean? In differential calculus, you learned that one in-
terpretation of the derivative is as a slope. Another interpretation is that the

derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by

3BluelBrown.)
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In particular, the (total) derivative of any function f : R" — R™, evaluated at

a=(ay,...,a,), is the linear function that best approximates f(x) — f(a) at a.

This leads to the familiar linear approximation formula for functions of one variable:
f(x) & f(a) + f'(a)(z — a) = L0
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Definition 55. The linearization or linear approximation of a differentiable

function f : R” — R™ at the point a = (a4, ..., a,) is
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Example 56. Find the linearization of the function f(z,y) = /5x — y at the point
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(1,1). Use it to approximate f(1.1,1.1). (—
G 4
)—- &’(li: ) =24 [I.K -.zf} [" ) = 2'(.lzre ozs’) -:Zf(ol\
ol ‘
Question: What do you notice about the equation of the lincarization? @
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We say f : R" — R is differentiable at a if its linearization is a good approximation

of f near a.

(@y)—=(ad) [[(x,y) — (a,b)]

In particular, if f is a function f(x,y) of two variables, it is differentiable at (a,b)

its graph has a unique tangent plane at (a, b, f(a,b)).

1 zy=0
0 zy+#0

Fo = § + A= o y=v

Example 57. Determine if f(z,y) = { is differentiable at (0,0).
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§14.4 The Chain Rule

Recall the Chain Rule from single variable calculus:

Similarly, the Chain Rule for functions of multiple variables says that if f : RP —

R™ and g : R" — R? are both differentiable functions then
QrxeD % (gxd)

DIf{g(x))) = DS (9(x) Dax).
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Example 58. Suppose we are walking on our hill with height h(x,y) = 4— ZxQ — ZyQ

along the curve r(t) = (t+ 1,2 —t?) in the plane. How fast is our height changing at

time t = 1 if the positions are measured in meters and time is measured in minutes?
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Example 59. Suppose that W (s, t) = F(u(s,t),v(s,t)), where F,u,v are differen-

tiable functions and we know the following information.

- [\‘3 S \N‘ju DQ(@(‘R\)}‘ 36&5 Do (%)

Find W,(1,0) and Wy(1,0).
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Application to Implicit Differentiation: If F(z,y,z) = c is used to implicitly

define z as a function of x and y, then the chain rule says:
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Example 60. Compute — and — for the sphere z? + 3% + 22 = 4.
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