§16.4 Divergence, Curl, Green's Theorem

Useful notation: $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$

So if f(x, y, z) is a function of three variables, $\nabla f = \left\langle \frac{\partial}{\partial x}(f), \frac{\partial}{\partial y}(f), \frac{\partial}{\partial z}(f) \right\rangle$

If $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ is a vector field:

$$\nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial t}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle P, Q, R \right\rangle = \frac{\partial}{\partial x} P + \frac{\partial}{\partial t} Q + \frac{\partial}{\partial z} R$$

$$\nabla \cdot \mathbf{F} = \left| Px + Qy + Re \right| \left(\frac{\text{Called}}{\text{div}(F)} \right)$$

$$\nabla \cdot \mathbf{F} = \left| Px + Qy + Re \right| \left(\frac{\text{Called}}{\text{div}(F)} \right)$$

$$\nabla \cdot \mathbf{F} = \left| Px + Qy + Re \right| \left(\frac{\text{Called}}{\text{div}(F)} \right)$$

$$\nabla \cdot \mathbf{F} = \left| Px + Qy + Re \right| \left(\frac{\text{Called}}{\text{div}(F)} \right)$$

$$= \left\langle \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle \times \left\langle P, Q, R \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z} \mathbf{R} \right\rangle + \left| \frac{\partial}{\partial x} \mathbf{R} \cdot \frac{\partial}{\partial z}$$

(0,-1,-2)

How do we measure the change of a vector field?

Cross product only defined for vectors in 123

- 1. Curl (in \mathbb{R}^3)
 - · Tells us Flow/Circulation density
 - · Measures local circulation at a point
 - · Is a vector
 - · Direction gives axis of rotation (using right hand rule)
 - Magnitude gives <u>Tolation</u> rate
 - $\operatorname{curl} \mathbf{F} = \bigvee \mathbf{X} \mathbf{F}$

• If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$: we use $\nabla \times \mathbf{F} = \nabla \times \langle P, Q, 0 \rangle = \langle O, O, Q_{\mathcal{H}} - P_{\mathcal{H}} \rangle$

@ From \$16.3 THM:

Curl(F) = $\langle 0,0,0 \rangle \iff F$ is consensative (i.e. $F = \nabla f$ for some $f: \mathbb{R}^3 \to \mathbb{R}$)

Geometric meaning Curl(F)=& is "F has no robation"

- 2. **Divergence** (in any \mathbb{R}^n)
 - Tells us Flux density
 - · Measures Compression/expansion at a point
 - Is a Scalar

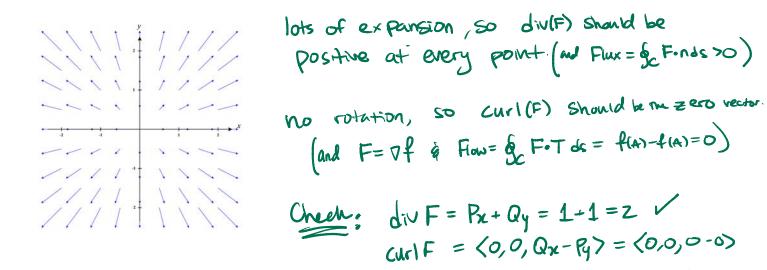
THM: divF=0 => F= PxG

For some other vector field G.

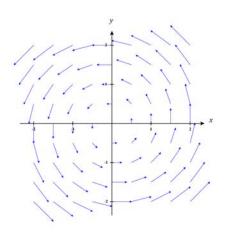
• $\operatorname{div} \mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F}$

Geometric meaning to divF= 8 is Fis "in compressible" or "no expansion/compression" §16.4 Page 145

Example 138. Let $\mathbf{F}(x,y) = \langle x,y \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.

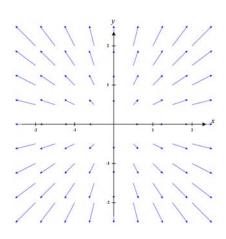


Example 139. You try it! Let $\mathbf{F}(x,y) = \langle -y,x \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.



§16.4 Page 145

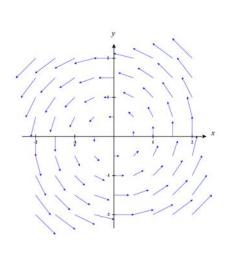
Example 138. Let $\mathbf{F}(x,y) = \langle x,y \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.



Check:
$$div F = Px + Qy = 1 + 1 = 2$$

 $Curl F = \langle 0, 0, Qx - Py \rangle = \langle 0, 0, 0 - 0 \rangle$
 $= \langle 0, 0, 0 \rangle V$

Example 139. You try it! Let $\mathbf{F}(x,y) = \langle -y,x \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.



lots of rotation so curi(F) \$\displays{0}\$ and should be pointing "Up" out of the page by RHR

no compression, so div(F)=0

Chech Curl
$$F = \langle 0,0,Q_{2x}-P_{y} \rangle$$

= $\langle 0,0,\Gamma-(-1) \rangle = \langle 0,0,z \rangle$ "up" V
div $F = P_{2x}+Q_{y} = O+O=O$ V

Question: How is this useful?

Answer: We can relate <u>Cates of Change of</u> inside a region to the behavior of the vector field on the boundary of the region.

Theorem 140 (Green's Theorem). Suppose C is a piecewise smooth, simple, closed curve enclosing on its left a region R in the plane with outward oriented unit normal \mathbf{n} . If $\mathbf{F} = \langle P, Q \rangle$ has continuous partial derivatives around R, then

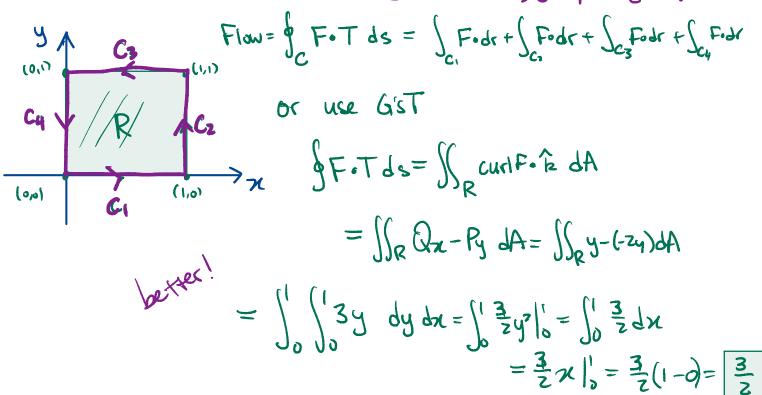
a) Circulation form:

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \ ds = \int_{C} P \ dx + Q \ dy = \iint_{R} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \ dA = \iint_{R} Q_{x} - P_{y} \ dA$$

$$b) Flux form:$$

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \ ds = \int_{C} P \ dy - Q \ dx = \iint_{R} (\nabla \cdot \mathbf{F}) \ dA = \iint_{R} P_{x} + Q_{y} \ dA$$

Example 141. Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = \langle -y^2, xy \rangle$ where C is the boundary of the square bounded by x = 0, x = 1, y = 0, and y = 1 oriented counterclockwise. $C = GUG_2UC_3UC_4$



Example 142. Compute the flux out of the region R which is the portion of the annulus between the circles of radius 1 and 3 in the first petant for the vector field

Fig. 1. Flux= of Finds =
$$\iint_{\mathbb{R}} P_{x} + Q_{y} dA$$

Flux= of Finds = $\iint_{\mathbb{R}} P_{x} + Q_{y} dA$

Polar contains

$$= \iint_{\mathbb{R}} \chi^{2} + y^{2} dA$$

Polar contains

$$= \iint_{\mathbb{R}} \chi^{2} + y^{2} dA$$

$$= \iint_{\mathbb{R}} \chi^{2} + y^$$

THY (6'sT Area Formula) Area $R = \frac{1}{2}g_c^{-y}dx + x dy$ Page 148

Example 143. Let R be the region bounded by the curve $\mathbf{r}(t) = \langle \sin(2t), \sin(t) \rangle$ for $0 \le t \le \pi$. Find the area of R, using Green's Theorem applied to the vector field

For Plax

Or
$$F = \frac{1}{2}\langle x, y \rangle$$
.

Gist (Flow)

$$F = \left(\frac{1}{2}y, \frac{1}{2}x\right)$$

Gist (Flow)

$$F = \left(\frac{1}{2}y, \frac{1}{2}x\right)$$

$$F$$

Cos 2t = 2cos2t-1 Sin 2t = Z sint cost

$$= \int_0^{\pi} -\sin t(2\cos^2 t - 1) + \frac{1}{2}(2\sin t \cos t) \cos t dt$$

U=cost $dn=-sntdt = \int_0^{\pi} -2\cos^2t \sin t + \sin t + \sin t \cos^2t dt$ U=cost $-cos^2t \sin t + \sin t dt = \frac{1}{3}\cos^2t - \cos t$ U=cost-cos(a) - cos(a) - cos(a)= = = 4/3

Note: This is the idea behind the operation of the measuring instrument known as a planimeter.

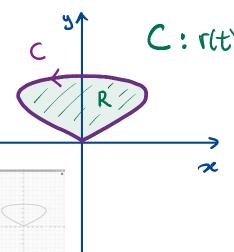
THY (6'ST Area Formula) Area $R = \frac{1}{2}g_{c} \times dy - y dx$ Page 148

Example 143. Let R be the region bounded by the curve $\mathbf{r}(t) = \langle \sin(2t), \sin(t) \rangle$ for $0 \le t \le \pi$. Find the area of R, using Green's Theorem applied to the vector field

For Flow
$$\mathbf{F} = \frac{1}{2}\langle x, y \rangle.$$
For Flow
$$\mathbf{F} = \langle \frac{1}{2}\mathbf{q}, \frac{1}{2}\mathbf{x} \rangle$$

Idea: Area
$$R = \iint_R 1 \, dA = \iint_{\frac{1}{2}} \frac{1}{2} \, dA$$

G'ST(Flux)
$$= g F \cdot n \, dS \quad \text{w/} F = \langle \frac{1}{2}x, \frac{1}{2}y \rangle$$



C:
$$\Gamma(t) = \langle \sin 2t, \sin t \rangle$$
 $\Gamma'(t) = \langle 2\cos 2t, \cos t \rangle$
 $t \in [0, \pi]$ $n \sim \langle \cos t, -2\cos 2t \rangle$

Area
$$R = \int_{c}^{\pi} \left(\frac{1}{2}x, \frac{1}{2}y\right) \cdot nds$$

$$= \int_{0}^{\pi} \left(\frac{1}{2}\sin 2t, \frac{1}{2}\sin t\right) \cdot \left(\cos t, -2\cos 2t\right) ds$$

$$= \int_{0}^{\pi} \frac{1}{2}\sin 2t \cos t - \sin t \cos 2t dt \quad unclear$$

$$Cos 2t = 2cos^2 t - 1$$

 $Sin 2t = 2 sint cost$

$$= \int_0^{\pi} \frac{1}{2} (2\sin t \cos t) \cos t - \sin t (2\cos^2 t - 1) dt$$

$$= \int_0^{\pi} \cos^2 t \sin t - 2\cos^2 t \sin t + \sin t dt$$

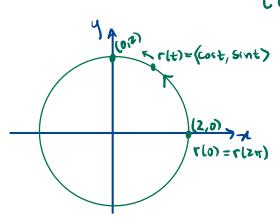
$$= \int_{0}^{\pi} - (\omega s^{2} + s) + s + s + dt = \frac{1}{3} \cos^{3} t - (\omega s + 1) = \frac{1}{3} \cos^{3} t - (\omega s + 1) - \frac{1}{3} \cos^{3} t - (\omega$$

Note: This is the idea behind the operation of the measuring instrument known as a planimeter.

§16.5, 16.6 Surfaces & Surface Integrals

Different ways to think about curves and surfaces:

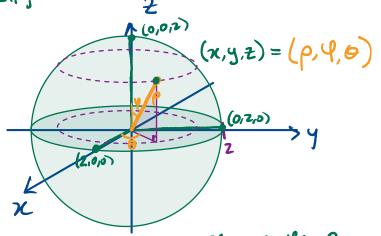
	Curves	Surfaces
Explicit:	y = f(x)	z = f(x, y)
	y= 14-x2	$Z = \sqrt{4 - \chi^2 - y^2}$
Implicit:	F(x,y) = 0	F(x, y, z) = 0
	$\chi^2 + y^2 = 4$	$\chi^2 + y^2 + z^2 = 4$
Parametric Form:	$\mathbf{r}(t) = \langle x(t), y(t) \rangle$	=1 /
		(Sit) = (x(sit), y(sit), 2(sit))
	$\Gamma(t) = \langle 2 \cos t, 2 \sin t \rangle$	7
	$+6[0.2\pi]$	



We've already done a few Surfice parametrization.

eig.

- \mathfrak{B} plane through the origin $r(s:t) = s\vec{V}_1 + t\vec{V}_2$
- 1) Spheres of Fixed radius P Using spherical coords



Sphere of
$$y = p \sin \theta \sin \theta$$

 $\tan \theta = 2$ $z = p \cos \theta$

50
$$\Gamma(S_1t) = \langle 2 \sin(s)\cos(t), 2 \sin(s)\cos(t), 2 \cos(s) \rangle$$

Or can just call promoteur Ψ, Θ , so

 $\Gamma(\Psi, \Theta) = \langle 2 \sin \Psi \cos \theta, 2 \sin \Psi \cos \theta, 2 \cos \Psi \rangle$

Example 144. Give parameteric representations for the surfaces below.

given X as a function of y & z so set y=s & z=t the parameters.

a)
$$x = y^2 + \frac{1}{2}z^2 - 2^{\circ}$$

$$F(s,t) = \langle s^2 + \frac{1}{2}t^2 - 2, s, t \rangle$$
self, teif.

Can also swap -over of $\sum can d t$ $\Gamma(s_1t) = \langle t^2 + \frac{1}{2}s^2 - 2, t, s \rangle$ $S_1t \in \mathbb{R}$

Or can try something like

$$y = rcos\theta$$
 > Then
 $z = \sqrt{2}rsin\theta$ | $y^2 + \frac{1}{2}z^2 = r^2$
so $x = r^2 - 2$

$$\vec{\Gamma}(r,\theta) = \left\langle r^2 - 2, r\cos\theta, \sqrt{2} r\sin\theta \right\rangle$$

$$r \approx 0, \theta \in [0,2\pi]$$

b) The portion of the surface $x = y^2 + \frac{1}{2}z^2 - 2$ which lies behind the yz-plane.

Same if us new ranges for sit. (x,4,2) is behind y2-plane if x50

So need
$$x = y^2 + \frac{1}{2}z^2 - 2 \le 0$$

 $\Rightarrow y^2 + \frac{1}{2}z^2 \le 2$ (ellipse) For $0 \ne 0$
c) $x^2 + y^2 + z^2 = 9$ $\Rightarrow \frac{y^2}{2} + \frac{z^2}{4} \le 1$ 4 so $y \in [-\sqrt{2}, \sqrt{2}]$
 $z \in [-\sqrt{4-2}y^2, \sqrt{4-2}y^2]$

Or just med

12-2 40 50 145

For 3

TE [0,52]

BE [0,217)

Sphere of radius P=9.

Spherical coords. $X = \rho \sin \theta \cos \theta$ $\rho = 3$ $y = \rho \sin \theta \sin \theta$ $z = \rho \cos \theta$

coords.

Cartesian coords

XE [-3,3]

Z = 19-ni-yz (tophalf only!)

$$\Gamma(s_1t) = \langle s_1t, \overline{19-s^2-t^2} \rangle$$

 $se[-3,31, te[-\overline{19-s^2}, \overline{19-s^2}]$

 $\vec{\tau}(q,\theta) = \langle 3\sin q \cos \theta, 3\sin q \sin \theta, 3\cos q \rangle$ $q \in [0,\pi], \theta \in [0,2\pi]$

$$d)x^2 + y^2 = 25$$

cylinder w/ horizontal cross-sections of radius (=5.

Cylindrical coords

$$0 \begin{cases} x = r(0)0 \\ y = rsin0 \\ z = z$$

$$\dot{r}(\theta,t) = \langle 5\cos\theta, r\sin\theta, t \rangle$$

 $\theta \in [0, 2\pi], t \in \mathbb{R}$

Can try catesian? $x \in [-5, 5]$ $y = \sqrt{25 - x^2}$ (right Laff only) z = z

$$\Gamma(s,t) = \langle s, \sqrt{2s-s^2}, t \rangle$$

 $SE[-5,5], t \in \mathbb{R}$

What can we do with this? Surface

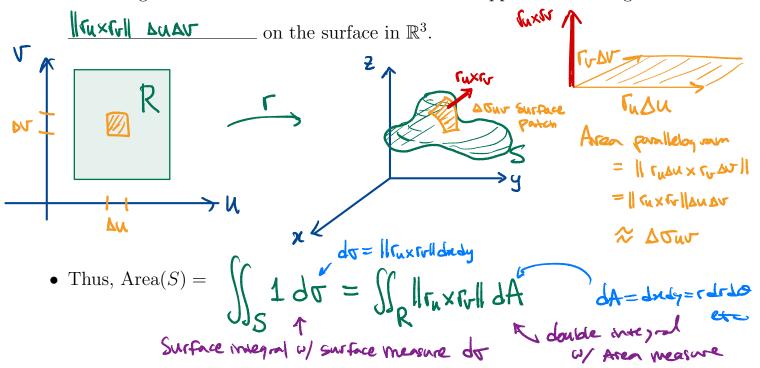
1955

P2

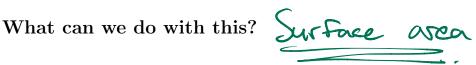
If our parameterization is **smooth** (\mathbf{r}_u , \mathbf{r}_v not parallel in the domain), then:

•
$$\mathbf{r}_u \times \mathbf{r}_v$$
 is normal to the surface S: $\Gamma(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$
 $u,v \in \mathbb{R}$

• A rectangle of size $\Delta u \times \Delta v$ in the uv-domain is mapped to a rectangle of size



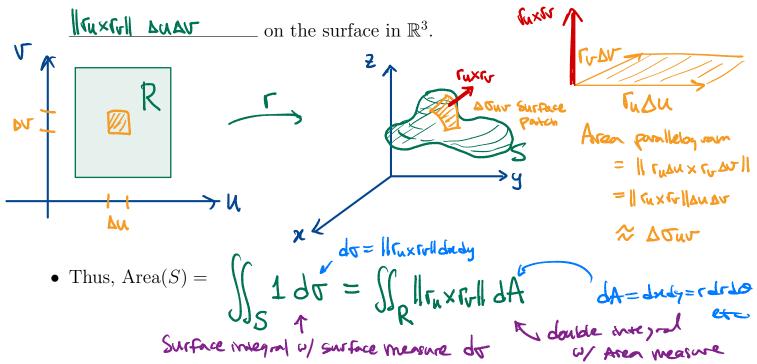
Example 145. You try it! Find the area of the portion of the cylinder $x^2 + y^2 = 25$ between z = 0 and z = 1.



If our parameterization is **smooth** (\mathbf{r}_u , \mathbf{r}_v not parallel in the domain), then:

•
$$\mathbf{r}_u \times \mathbf{r}_v$$
 is Normal to the surface S: $\Gamma(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$
 $u,v \in \mathbb{R}$

• A rectangle of size $\Delta u \times \Delta v$ in the uv-domain is mapped to a rectangle of size



Example 145. You try it! Find the area of the portion of the cylinder $x^2 + y^2 = 25$

between
$$z = 0$$
 and $z = 1$. $\vec{r}(\theta,t) = \langle 5\cos\theta, 5\sin\theta, t \rangle$, $\Theta \in [0,2\pi]$, $Z \in [0,1]$

$$r_{b} = \langle -5 \sin \theta, 5 \cos \theta \rangle$$

$$r_{t} = \langle 0, 0, 1 \rangle$$

So
$$h = \Gamma_{\theta} \times \Gamma_{\theta} = \begin{vmatrix} \hat{\tau} & \hat{J} & \hat{E} \\ -5sm^{\theta} & 5us\theta & 0 \end{vmatrix} = \langle 5cos\theta, -(-5sm\theta), 0 \rangle$$

So ||n||= 250010+25cm20+0=25, ||n||=5.

Area
$$S = \iint_{R} 5 dA = \int_{0}^{2\pi} \int_{0}^{1} 5 dt d\theta = \int_{0}^{2\pi} 5t \Big|_{0}^{1} d\theta = \int_{0}^{2\pi} 5 d\theta = 5 + 2\pi = 10 \text{ TC}$$

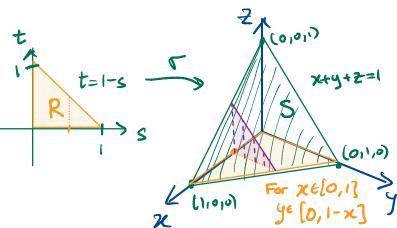
Example 146. Suppose the density of a thin plate S in the shape of the portion of the plane x + y + z = 1 in the first octant is $\delta(x, y, z) = 6xy$. Find the mass of the plate.

$$M = \iint_{S} S(x,y,z) d\sigma$$

Step!: pametrze S

Stepz: Compute do = Hruxryll dA

Step 3: Substitute



Step 1:
$$\Gamma(s,t) = \langle s, t, 1-s-t \rangle$$

Then Z=1-x-y

R: SE[0,1], tE[0,1-5]

Stop Z:
$$\Gamma_s = \langle 1,0,-1 \rangle$$

 $\Gamma_t = \langle 0,1,-1 \rangle$

Mass =
$$\iint_{S} \delta d\sigma = \iint_{R} \delta x y \sqrt{3} dA = \int_{0}^{1} \int_{0}^{1-s} \delta \sqrt{3} s + dt ds$$

$$= \int_0^1 3\sqrt{3}st^2 \Big|_0^{1-c} ds = \int_0^1 3\sqrt{3}s(1-s)^2 ds = \int_0^1 3\sqrt{3}s(s^2-2s+1) ds$$

$$= \int_{0}^{1} 3\sqrt{3} \left(s^{3} - 2s^{2} + s \right) ds = 3\sqrt{3} \left(\frac{1}{4} s^{4} - \frac{2}{3} s^{3} + \frac{1}{2} s^{2} \right) \Big|_{0}^{1} = 3\sqrt{3} \left(\frac{1}{4} - \frac{2}{3} + \frac{1}{2} \right) = 0$$

$$= 3\sqrt{3} \left(\frac{3}{4} - \frac{2}{3} \right) = 3\sqrt{3} \left(\frac{9 - 8}{12} \right) = \frac{3\sqrt{3}}{12} = \frac{1}{3}$$

§16.6, 16.7 Flux Surface Integrals, Stokes' Theorem

Goal: If **F** is a vector field in \mathbb{R}^3 , find the total flux of **F** through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is in the direction of the outward parties normal vector of S (as Chosen in the orientation of S) If $\mathbf{r}(u,v)$ is a smooth parameterization of S with domain R, we have

flux of
$$\mathbf{F}$$
 through $S = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) d\sigma = \iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$.

$$\hat{\mathbf{n}} = \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\|\mathbf{r}_{u} \times \mathbf{r}_{v}\|} \quad \text{So } \hat{\mathbf{r}} \times \mathbf{r}_{v} \|\mathbf{r}_{u} \times \mathbf{r}_{v}\|.$$

Example 147. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $\|\mathbf{r}_u \times \mathbf{r}_v\|$ when z = f(x, y) so that S is the graph of a scalar function with domain in \mathbb{R}^2 .

Example 148. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $\|\mathbf{r}_u \times \mathbf{r}_v\|$ when S is a portion of a sphere of radius $\rho = a$, for some fixed constant a, using the standard spherical coordinates for your parametrization.

Solm.
$$\Gamma_{q} = \langle a\cos \varphi \cos \theta, a\cos \varphi \sin \theta, -a\sin \varphi \rangle$$
 $\Gamma_{\theta} = \langle -a\sin \varphi \sin \theta, a\sin \varphi \cos \theta, o \rangle$

So $\Gamma_{\varphi} \times \Gamma_{\theta} = \begin{vmatrix} c & c & c \\ a\cos \varphi \cos \theta & a\cos \varphi \sin \theta & -a\sin \varphi \end{vmatrix}$
 $= \langle \alpha^{2} \sin^{2} \varphi \cos \theta, -\alpha^{2} \sin^{2} \varphi \sin \theta, \alpha^{2} \sin \varphi \cos \varphi \cos^{2} \theta + \alpha^{2} \sin \varphi \cos \varphi \sin^{2} \theta \rangle$
 $= \langle \alpha^{2} \sin^{2} \varphi \cos \theta, -\alpha^{2} \sin^{2} \varphi \sin \theta, \alpha^{2} \sin \varphi \cos \varphi \cos^{2} \theta + \alpha^{2} \sin \varphi \cos \varphi \sin^{2} \theta \rangle$
 $= \langle \alpha^{2} \sin^{2} \varphi \cos \theta, -\alpha^{2} \sin^{2} \varphi \sin \theta, \alpha^{2} \sin \varphi \cos \varphi \cos^{2} \theta + \alpha^{2} \sin \varphi \cos \varphi \sin^{2} \theta \rangle$
 $= \langle \alpha^{2} \sin^{2} \varphi \cos \theta, -\alpha^{2} \sin^{2} \varphi \sin^{2} \varphi \sin \varphi \cos^{2} \varphi + \alpha^{4} \sin^{4} \varphi \sin^{2} \varphi \cos^{2} \varphi \cos$

§16.6, 16.7

Example 149. Find the flux of $\mathbf{F} = \langle x, -y, z \rangle$ through the upper hemisphere of $x^2 + y^2 + z^2 = 4$, oriented away from the origin.

Want to compute Flux = SI, F.n. dt

- D para netrize S
- (2) Comptule partials of cross product
- 3 substitute à integate.

(1) S: Sphere $w \neq \rho = 2$ So $\Gamma(\psi, \Theta) = \langle Z \sin \psi \cos \Theta, Z \sin \psi \sin \Theta, 2\cos \psi \rangle$ $\forall \{ [0, T/2], \Theta \in [0, 2T] \}$ From previous page: $\{ w \mid \alpha = 2 \}$

Tyx (0 = (4 Sin24 cos0, -4 sin24 sin0, 4 sin4 cos4) Flux =

(3) (27) (12) (2 sin 4 cos 0, -2 sin 4 sin 0, 2 cos 4) (4 sin 24 cos 0, -4 sin 4 sin 4 cos 4) d4 d0

=)= 1 8 Sin3 4 cos 0+ 8 Sin3 4 Sin3 4 Sin4 cos 4 24 20

 $= \int_{0}^{2\pi} \int_{0}^{\pi/2} 8 \sin^{2} \varphi + 8 \sin^{2} \varphi + 6 \sin$

 $= \left(\frac{2\pi}{8\cos(\pi I_2)} - (-8\cos 0) \right) d\theta = \int_0^{2\pi} 8 d\theta = 8\theta \Big|_0^{2\pi}$

 $= 16\pi$

Example 150. You try it! Compute $\iint_S G \cdot \mathbf{n} \, d\sigma$ the flux of G across the surface S.

$$G(x, y, z) = x^2$$
, $S: x^2 + y^2 + z^2 = 1$

Example 150. You try it! Compute $\iint_S G \cdot \mathbf{n} \, d\sigma$ the flux of G across the surface S.

$$G(x,y,z) = x^{2}, \quad S: \ x^{2} + y^{2} + z^{2} = 1$$

$$S: \text{ Unit sphere } \rho = | \quad \text{ then surface measure is the standard spherical}$$

$$r(\Psi,0) = \langle \sin \Psi \cos \theta, \sin \Psi \sin \theta, \cos \Psi \rangle \qquad \text{ element } d\sigma = || \vec{r}_{\Psi} \times \vec{r}_{\theta}|| = \rho^{2} \sin \Psi \, d\Psi \, d\theta$$

$$R: \ \Psi \in [0,\pi], \ \Theta \in [0,2\pi]$$

$$So \quad M = \iint_{S} G \, d\sigma = \int_{0}^{2\pi} \int_{0}^{\pi} \left(\sin \Psi \cos \theta \right)^{2} \sin \Psi \, d\Psi \, d\theta$$

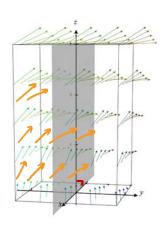
$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(|-\cos^{2}\Psi| \cos^{2}\theta \sin \Psi \, d\Psi \right) = \int_{0}^{2\pi} \int_{-1}^{1} -(|-u^{2}|) \sin \theta \, du \, d\theta = \int_{0}^{2\pi} \int_{-1}^{1} (|-u^{2}|) \cos^{2}\theta \, du \, d\theta$$

$$= \int_{0}^{2\pi} \cos^{2}\theta \, (u - \frac{1}{3}u^{3})_{-1}^{1} \, d\theta = \int_{0}^{2\pi} z \cos^{2}\theta \, (|-\frac{1}{3}|) d\theta = \frac{1}{3} \int_{0}^{2\pi} \frac{1 + \cos^{2}\theta}{2} \, d\theta = \frac{2}{3} \left(\theta - \frac{1}{2} \cos^{2}\theta \, \Big|_{0}^{2\pi} \right)$$

$$= \frac{2}{3} \left[\left(2\pi - \frac{1}{2} \right) - \left(0 - \frac{1}{2} \right) \right] = \frac{4\pi}{3}$$

Example 151. You try it! Suppose S is a smooth surface in \mathbb{R}^3 and **F** is a vector field in \mathbb{R}^3 . True or False: If $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma > 0$, then the angle between **F** and **n** is acute at all points on S.

Example 152. You try it! Based on the plot of the vector field \mathbf{F} and the surface S below, oriented in the positive y-direction, is the flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma$ positive, negative, or zero?

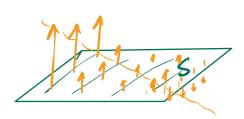


Recall: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field, we defined its:

1. divergence: $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$

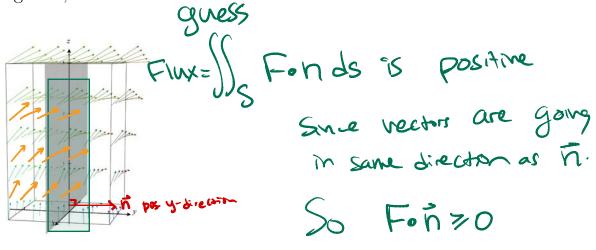
2. curl:
$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Example 151. You try it! Suppose S is a smooth surface in \mathbb{R}^3 and \mathbf{F} is a vector field in \mathbb{R}^3 . True or False: If $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma > 0$, then the angle between \mathbf{F} and \mathbf{n} is acute at all points on S.



False just need "more work done" in the direction of in as opposed to the opposite direction.

Example 152. You try it! Based on the plot of the vector field \mathbf{F} and the surface S below, oriented in the positive y-direction, is the flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma$ positive, negative, or zero?



Recall: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field, we defined its:

1. divergence: $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$

2. curl:
$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

$$\langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Example 153. You try it! Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field in \mathbb{R}^3 with continuous partial derivatives. Compute the divergence of the curl of \mathbf{F} , i.e. $\nabla \cdot (\nabla \times \mathbf{F})$.

Theorem 154 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds.$$

- If S is a region R in the xy-plane, then we get:
- An **oriented surface** is one where _____
- \bullet S and C are oriented compatibly if:

Example 153. You try it! Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field in \mathbb{R}^3 with continuous partial derivatives. Compute the divergence of the curl of \mathbf{F} , i.e. $\nabla \cdot (\nabla \times \mathbf{F})$.

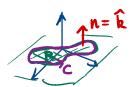
$$\nabla \cdot (\nabla x F) = \left(\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right) \cdot \left(R_y - Q_z, P_z - R_x, Q_x - P_y\right)$$

$$= R_{yx} \cdot Q_{zx} + P_{zy} - R_{xy} + Q_{xz} - P_{yz} = 0 \text{ by Fubini's Thm}.$$

Theorem 154 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let F be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{\mathbf{C}} \mathbf{F} \cdot \mathbf{T} \ ds.$$
Flux of Curl(F)
across surface S
Circulation (Flow) oraund
Closed loop C which S
the boundary of S

• If S is a region R in the xy-plane, then we get:

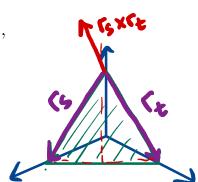


- An oriented surface is one where <u>Normal vector stays consistent</u> as you move along surface * mobiles stays is <u>Not</u> occupied.
- S and C are oriented compatibly if:

Example 155. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by calculating the flux across the interior of C.

$$\mathbf{F} = \langle y, xz, x^2 \rangle$$

C: boundary of x + y + z + 1 in first octant, oriented counter-clockwise from above.



$$\Gamma_{s} = \langle 1, 0, -1 \rangle$$
 $\Gamma_{t} = \langle 0, 1, -1 \rangle$ $\Gamma_{s \times \Gamma_{t}} = \begin{vmatrix} \hat{1} & \hat{1} & \hat{k} \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{vmatrix} = \langle 1, 1, 1 \rangle$

$$F = \langle y, \chi_{2}, \chi_{2}^{2} \rangle$$
Outward powerly $\sqrt{2}$

=
$$\int_{0}^{1} \int_{0}^{1-s} \langle -s, -2s, (1-s-t)-1 \rangle \cdot \langle 1, 1, 1 \rangle dt ds$$

$$= \int_{0}^{1} \int_{0}^{1-s} s - 2s - s - t dt ds = - \int_{0}^{1} \int_{0}^{1-s} +4s + t dt ds$$

$$= -\int_0^1 4st + \frac{1}{2}t^2 \Big|_0^{1-s} ds = -\int_0^1 4s(1-s) + \frac{1}{2}(1-s)^2 ds$$

$$= -\int_0^1 4s - 4s^2 + \frac{1}{2}s^2 - s + \frac{1}{2}ds = \int_0^1 \frac{7}{2}s^2 - 3s - \frac{1}{2}ds = \frac{7}{6}s^3 - \frac{3}{2}s^2 - \frac{1}{2}s \Big|_0^1$$

$$=\frac{7}{6} - \frac{3}{2} - \frac{1}{2} = \frac{7}{6} - \frac{12}{6} = \frac{-5}{6}$$

Example 156. You try it! Use Stokes' Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma$ the flux of \mathbf{F} across S by calculating the circulation line integral around the boundary curve C of S.

$$\mathbf{F} = \langle 2z, 3x, 5y \rangle$$

$$S : \mathbf{r}(r, \theta) = \langle r \cos \theta, r \sin \theta, (4 - r^2) \rangle$$

$$R : r \in [0, 2], \ \theta \in [0, 2\pi]$$

Example 156. You try it! Use Stokes' Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \ d\sigma$ the flux of \mathbf{F} across S by calculating the circulation line integral around the boundary curve C of S.

$$\mathbf{F} = \langle 2z, 3x, 5y \rangle$$

$$S : \mathbf{r}(r, \theta) = \langle r \cos \theta, r \sin \theta, (4 - r^2) \rangle$$

$$R : r \in [0, 2], \ \theta \in [0, 2\pi]$$

S:
$$\vec{r}(r,\theta) = \langle r\cos\theta, r\sin\theta, 4-r^2 \rangle$$
 R: $re[0,2], \Thetae[0,2\pi]$
C: $\hat{r}(\theta) \neq \langle 2\cos\theta, 2\sin\theta, 0 \rangle$, $\Thetae[0,2\pi]$

S: upper half
sphere
0=2

body circle of radius 2 in xy-plane

So Flux thrus =
$$\iint_{S} \nabla x F \cdot n \, d\tau = \oint_{C} F \cdot d\tau$$

= $\int_{0}^{2\pi} \langle 0, 6\cos\theta, 10\sin\theta \rangle \cdot \langle -2\sin\theta, 2\cos\theta, 0 \rangle \, d\theta$
= $\int_{0}^{2\pi} |2\cos^{2}\theta| \, d\theta = \int_{0}^{2\pi} 6(1+\cos 2\theta) \, d\theta$
= $(60 + 3\sin 2\theta)_{0}^{2\pi} = (6(2\pi) + 3\sin 4\pi) - (6(0) + 3\sin 6)$
= 12π