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MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer FF
OFFice Hank

Daily Announcements & Reminders:

Koeodescpe  sufety-Qua 5//4

¥ \WeBWork
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* Plazzan
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Goals for Today: Sections 12.1, 12.4, 12.5

e Set classroom norms
e Describe the big-picture goals of the class
e Review R? and the dot product

e Introduce the cross product and its properties
Class Values/Norms:

e Mistakes are a learning opportunity

Mathematics is collaborative

Make sure everyone is included

Criticize ideas, not people

Be respectful of everyone

Pradepnic \MN&W

Leacn new Fhings.
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Big Idea: Extend differential & integral calculus.
What are some key ideas from these two courses?
Differential Calculus Integral Calculus
ke / um—mm-\—nj lnte Q)m\s
decaives / pariwl desrvueroe S Piembm\n Sums
‘angeny  Rnes Ioprrpes Wdes ol €
Unik Gstle Ar@a\ under we QArve
geapwinyy /rsec/min /i Prekon Sertes y
TWA\&N’ Serves [ Apervx

Before: we studied single-variable functions f : R — R like f(z) = 222 — 6.

Now: we will study multi-variable functions f : R” — R™: each of these functions
is a rule that assigns one output vector with m entries to each input vector with n

entries.
8.3-
$ot,9,2)= (2034, 42, 2‘%'”‘13&“0%’1
0\} wu\cs.tﬂis (
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§12.1: Three-Dimensional Coordinate Systems
S
s (,42)e R

2% C,OOJAM'\'Q PUM-Ls
—o ‘oath wall®
=0 “"Plev”

Y=o “ sl Wall”

% 0Cvons (Ve Guadmns)

Question: What shape is the set of solutions (z, %, 2) € R? to the equation 22 +y? =
1?7

"(} C \mdler l
|

7{‘,7-&"3::1 7 Q 2=0
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§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors u = (uj,ug,...,u,) and v =
(V1,V9, ..., Uy,) is

n
u-v= lAIV!\’(' M‘L VZ""'““"'M“VV\: ;MN:

This product tells us about ;mL_QLaL&ﬂﬁLMﬁ_‘bALU&—H‘N&I

4; ¢ T Rerr= [dfvios O

e

Ol Wb = WEe « U
> [T = |l

In particular, two vectors are orthogonal if and only if their dot product is Q

Example 2. Are u= (1,1,4) and v = (—3, —1, 1) orthogonal?
VW UY e d-3,-), 17 = 2 -L64=0

F-
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice”

way. WEe Weank NM(/WA o Plﬁ.ﬁ aef whw vetior Mo‘-t"“]}w)'
Scalar ma Y= Tast 3§

B % (or4w) = Wyt Wxw

o Cuy g = clwx) = wxev

Definition 3. The cross product of two vectors u = (uy, ug, ug) and v = (vy, va, v3)
in R? is

A A

VYo

We W (2
uxv=— | Vi V& \1‘5

W tr%r/\\" o oS A S
loess veckoes o (@
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Example 4. Find (1,2,0) x (3,—1,0).

T 3
[ 2

0o «°

{1,2,09% (3,-1,8) = ‘

3 -l

1

- > -

= (-1-0)%

- v‘.}ﬁ of <O/O/ '?7

Sonivy O,

Note hey W= uxe & redly perp. Yo
oot A AND Uy as deSired -



62 \ 9oz
® §12.3, 12.4 ()O “\\Q Page 7

N—

A Geometric Interpretation of u x v

The cross product u x v is the vector

u x v = (Jul|v|sinf)n

where n is a unit vector which is normal to the plane spanned by u and v.

Since n is a unit vector, the magnitude of u x v is the area of the parallelogram
spanned by u and v.

lu x v| = |ul|v|siné

Example 5. Find the area of the parallelogram determined by the points P, @),
and R.
P(1,1,1), Q(2,1,3), R(3,—1,1)

—P—&—_—. <2-\, i-1v,3\) =X\, 0,27
<2|’2/°7

\)

_6(1: ('3 -y, V=Y, \"\7

TReu> ~ [\
> S b ~ |0 * Al T\, \ 0‘
S0 PQ%P“": ng - b‘—zosvé(Lo) h‘L-z
A

-z_o

(

= Y+ iy -2 o0 (W42
& | faxd\= [y 2§30 =| G
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§12.5 Lines & Planes

Lines in R2, a new perspective:
)

W=ttt The e § all poink
Jlo)= b+ {:*’\E’J, +elR

(10/‘3°) =P yd .
4
| \g
P i any pownt s
[1 )N ‘\'M \M G,V W.
o
el Tl s

NQLYOC gguoction
Example 6. Find a vector equation for the line that goes through the points P =
(1,0,2) and @ = (—2,1,1).
3
P

(,1,0- 0 PQ=(-2,1,-17

?; (\ to"l\

~ .
33
Jwy= {1,027+ t(2.0.-D
* Yoo Lem
\je Los f
ehns: — oS

A= -3t
?,\Az t teR
2-2-%t
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Planes in R?

Conceptually: A plane is determined by either three points in R? or by a single
point and a direction n, called the normal vector.

Need -
¥ pot 6 Two L vecint m plane
+ 3 cown<c
3 pont and  OL norma) Ve Gt

Algebraically: A plane in R? has a linear equation (back to Linear Algebra! im-
posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

A+ Baﬁ— ce=d (4wo Fee vortd
CQolne o (,4,2) Tar Sawits &
O,y o, \e, ) =4 (D
> guon &~ Ped prr (0,4, 20) T Pt Tven
Glogn BY0lat ) =4 (D

Qo b

S ey WO YY) we gt ’“7”)‘“ E:‘:’lu
w/ e

G""” - ftor4e 32) ¢ Ly O =0 / Nz {abeC2-

oc | O (-9 # bly-gorc(e—2)=0
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Example 7. Consider the planes y — z = —2 and x —y = 0. Show that the planes
intersect a nd an equation for the line passing through the point P = (=8, 0, 2)
which is parallel to the line of intersection of the planes.

?\N\,L i O')(*P‘a-'%z-?/ ﬁ\‘—‘ <0, L, =\

K}
Plane 2 7(_-—%{'02 =D V\z:<)/”,0>

G ™ Vector W lae 16 gesdlel
) S >
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§12.6 Quadric Surfaces

Definition 8. A quadric surface in R? is the set of points that solve a quadratic
equation in z,y, and z.

You know several examples already:

Sowece of foding
@ (X" O\Y' + [‘1‘\0\1 + (2' ¢\t =¢* convesed of (@l 0)

@ WH=L  Cylnks o mdus d
extending alonq Z-oxis (Q'W kechre

on SI12.(

The most useful technique for recognizing and working with quadric surfaces is to
examine their cross-sections.
_—

Example 9. Use cross-sections to sketch and identify the quadric surface x = 22+y2.

Hocizonta\ ross  seckwons

Ty set T st 34 nt N
Z2=0 & g=o0+4 (2=e

A=y
= a=y parsiola ﬂ;\wr*\.
2=l 2 A=lry® paaila &7‘

Z=e| = X= (;—\\1‘('7"
5 w1 me el

\“ Wﬂ\l Bon 2= = 7(.’«'&7'-\-")7' eu-a\vo\o\ opumar%\nr
W/ x-wescepd o2

\L)\“’W\f P‘\DG\A"( \ﬁ = C_,ol\g* 0< T=CUNGRA"?
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Example 9. Use cross-sections to sketch and identify the quadric surface z = 2242

Pov.  page
(cont.) (X0SS Sectidrns pmuel 2y Gt gz const Y, .
SeA A= oSy to back woll/ 42 pine z=o 5 z=o+y x=::::\
_ — 22 .2 d T e e K L
270 22 0= 2%« ) S\u\’—)s(:.»\ B=l 2 x= eyt pevila S~
)=

1zl # | Z 249 ciede

Az = - = 2%xyt Vo Silin

Z=-l = x=fley
e SRR T pombola

In goneenl Won 2=k = x= B4t prabsle opavy s
W x-wmecep o2

Lz 2 2 2=gt+r Gnle

q:q 2 Ll"fl“"f‘ e

W (% sechon! of
Surfece v s grelle
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LT LS -
\ = e
Lost s U= consr F el den

2 are\eol A et wtw{f 3 LGM-a\ h._._zz_“’l coecle of
7o = a=wo el BT} T e e conied
..S,\ = Uz 2%1 PR\ \Y alt (0,0)-
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TABLE 12.1 Graphs of Quadric Surfaces

Elliptical cross-section

12.6 Cylinders and Quadric Surfaces 743

in the plane z = zg N
The ellipse Lz +
a

in the xy-plane

y
X

The ellipse N

X_z i The ellipse 25 + 5 =1

a < .

in the xz-plane in the yz-plane

o2
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The line z = _}%y The elhpee = + P

in the yz-plane z=c

z
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/
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HYPERBOLOID OF ONE SHEET %

HYPERBOLIC PARABOLOID

o

_c 2
The parabola z = 2 X

2y
The ellipse 5 + = = 1
. a
in the xz-plane

in the plane z = ¢

The parabola z = —y \\

in the yz-plane

‘-c

ELLIPTICAL PARABOLOID .‘% l?
Z ot no 2t dem
A omS e Swg SN

Part of the hyperbola —2 — 1 in the xz-plane

B z
The e]llpse = + Z 2
\ % in the pldne =c 4

2

ELUPS‘A The elllpse = + y =

-
«/ in the xy- plane
b

=2
¢

zZ
2

y 2
+- -2 =1
b? c?

Congr erim g T 44" gos wedd, 2+ -

The parabola z = ﬁy in the yz-plane

2
Part of the hyperbola pl —ﬁ =1

» o a?
in the plane z = ¢

22

_ Part of the hyperbola X 72}—2 =
c 2 @

The parabola z = 2z X in the plane z = —¢

in the xz-plane

<

X

‘ ]
)

2
x* _ Z
bz—afz—z,c>0
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§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R? and R? as well. We said that a function r : R — R?
with r(f) = vt + ro produces a straight line when graphed.

't‘/.tp;ydfrg' 'Fo, t 5 a @l vare
This is an example of a vector-valued function: its input is a real number ¢ and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:
& —
¥ s T = Op ++tV, el

- w LoL2w
o Cicches \'u;)=<cose,s~ 07 056

\)W( (an oo, \Hua% oy wecovon Wee
240
F‘;’ )= <‘t ’_(:7,7 L

Given a fixed curve C' in space, producing a vector-valued function r whose graph is

C' is called %ﬂmm% the curve C, and r is called a ?M&mdj‘\jmad

C.
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Example 10. Consider ri(t) = (cos(t),sin(t),t) and ro(t) = (cos(2t),sin(2t), 2t),
each with domain [0, 27]. What do you think the graph of each looks like? How are
they similar and how are they different?

2
% .
N N
7(%“"‘77)
[
S, N
(11010) > ‘/(\,o 0) >
x 4 x B

t=0  T0)=Cw@, 5% 07 = <y o050)

?‘(‘1:\ = <us£“’h) ,s‘m(“'h),‘“'h) = <0, \, TR
‘)W\(/\'\\\\Abf dldesont 6‘—,,\0\,\ /SO aen

Wan  Sams e ow
S\ FPELEMT D OMA N

Check your intuition
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute %im<t2, 2,In(t))= -
—e

L=\, w2, e, )

toe Ve

= < e, Z, lae? = (€% 2,12

And with continuity: —\:H«') = #L—H’t + %&)/A\ + \\H’) /\ﬂ\,
L 0

Example 12. Determine where the function r(t) = ti — oR j +sin(?)k is contin-

L eMe Lty 4 Th | an b= s
£
al Ofe  CoRniAowS on v SIMARL, iy

e (1) 3§ cntwaow! o

\D&((\B%QD\‘;W\ (\ (\*m,fl)\l (-22) Ql,bo) N L
— T~

S W
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And with derivatives:

Example 13. If r(t) = (2t — 1 + 1,¢ — 1), find r'(¢).
V= <2-t,1Yy
: whes « (7 o'(2)

v(ov=C2,)  c'h=40)

Interpretation: If r(¢) gives the position of an object at time ¢, then

o (1) gives __Nelocity Wecdof ok e +

o |1/(1)| gives W (,QU&\A() ar e .b

OLce\Lndion yector & Twe t

o r'(t) gives

Let’s see this graphically

Example 14. Find an equation of the tangent line to r(t) = (2t — 3t + 1,t — 1) at
time ¢ = 2.
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T={r-¢, 0

eta= {0,) Tws welr 5 powllel h
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And with integrals:

Example 15. Find fol(t,e%,secQ(t)) dt.

\
S\ ¢r, @ setty e = (a0, e 7 o
]
. <—\i9 ’\ieﬂ ton(h) = Co,5,07
=1 <3 ey, wm\

At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

400

(—200sin(2t), 200 cos(t), 400 — 1——|—t> m/s.

v(t)

If he also knows that he started at the point r(0) = (0,0, 0),
use calculus to reconstruct his flight path.

S —\?l‘t) A.t = ; 52 (/’W\'\Qqﬂa\ of velo Lé\—\’ IS QOS\%\\W\x

G b= %<-Zoo G2t 200 cost, 4 00 = ‘L}T‘f D dt

= <?ﬁ(}0$l+“\' C—\’ 2.00 Qﬂ@»\-h ,qoo‘t - LLOO L\U‘l‘b) ¥ C}?
2
@ o |
Ot =_9q4 - Cx=', CLyzf
2(0)=< 10046 G, ) =A%
A )&L‘t\= < o cot2g —100  zooswt D0t ,qool“(mv “




