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MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.4, 12.5

• Set classroom norms

• Describe the big-picture goals of the class

• Review R3
and the dot product

• Introduce the cross product and its properties

Class Values/Norms:

• Mistakes are a learning opportunity

• Mathematics is collaborative

• Make sure everyone is included

• Criticize ideas, not people

• Be respectful of everyone

•

•

8 : 00

15-10 min)
8 : 10

Office Hours

*Gradescope Safety- Quiz 5/14
* WeBWorK
* Quiz O (Practice Quiet not for a grade

* PAS120 /First peer assessment) CPs

* PLEASE read the Syllabus !

* Piazza
* HWHW CPS

Academic honesty

Learn new things.
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Big Idea: Extend di!erential & integral calculus.

What are some key ideas from these two courses?

Di!erential Calculus Integral Calculus

Before: we studied single-variable functions f : R → R like f(x) = 2x2 ↑ 6.

Now: we will studymulti-variable functions f : Rn → Rm
: each of these functions

is a rule that assigns one output vector with m entries to each input vector with n
entries.

8 : 10 -10 min) 8 :20

limits/continuity Integrals
derivatives/partial derivatives Riemann Sums

fangent lines Improper integrals

Optimization Integration techniques
unit circle Area under the curve

graphing/max/min/inflection Series

Taylor Series/ApproxFund . Thm ofCalc.
Convergence of series

2 .5
f(x, y ,z) = lix-3y ,

4z
,
21x-4)

Elina !

Or usees !

fl , y) = 12-1
,

cosse
,
Inlatyl)
-
yea, ..
no .
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§12.1: Three-Dimensional Coordinate Systems

Question: What shape is the set of solutions (x, y, z) ↓ R3
to the equation x2+y2 =

1?

8 :20 (5 usin)
8 :25

* (2 , y ,z) -IR3

* coordinate planes
20 "back wall"

z=0 "Floor"

y= 0 "side wall"

* Octants (vs - quadrants)

Cf. M2

↑

Cylinder !

=
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§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors u = ↔u1, u2, . . . , un↗ and v =

↔v1, v2, . . . , vn↗ is

u · v =

This product tells us about .

In particular, two vectors are orthogonal if and only if their dot product is .

Example 2. Are u = ↔1, 1, 4↗ and v = ↔↑3,↑1, 1↗ orthogonal?

8 :25 (7 min)
8 :32

UV, + 12 Vz+...UnUn= Givi

The angle between the vectors ,

-
Then U .U= JullutcosO

and
UoU = Mi+U+...Un

So -Hull
O

(1
,
1

, 4704-3
,

= 1
, 67=3

- 1 + 4 = 0

Yes
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice”
way.

1.

2.

Definition 3. The cross product of two vectors u = hu1, u2, u3i and v = hv1, v2, v3i
in R3 is

u⇥ v =

8 :32 (5 min)
8:47

=

we want the method to play nice with vector addition i
scalar mal that is;

UX(v+w) = nxv+ uxw

cuxv = cluxu = uxav

/
Where 5 ,J ,

t are just the standard

basis vectors in I

= <1 ,
0

, 07

ju 50, 1
,
07

↳= 10 , 0, 17
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Example 4. Find →1, 2, 0↑ ↓ →3,↔1, 0↑.

8 : 47 (5 min) 8 :52

(1 .2
,
07 x (3 .

-1
,0 =F

=El
= ( - 1 - 6) T

= -zh or 10 ,
0

, -77 .

Sanity Checki

Note that w= UXV is really perp . to

both U AND U,
as desired.
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A Geometric Interpretation of u↓ v

The cross product u↓ v is the vector

u↓ v = (|u||v| sin ω)n

where n is a unit vector which is normal to the plane spanned by u and v.

Since n is a unit vector, the magnitude of u ↓ v is the area of the parallelogram

spanned by u and v.

|u↓ v| = |u||v| sin ω

Example 5. Find the area of the parallelogram determined by the points P , Q,

and R.

P (1, 1, 1), Q(2, 1, 3), R(3,↔1, 1)

8:52 10 min
9 :02

PQ = (2 -1 ,
1 - 1

,
3 =1) = S1

,
0

,
2)

PR= (3 -1,1 - 1
,

1 - 17 = S2 , -2
, 07

so Paxe= /) -3)25) + (2)I
z -20

= 44 + 45 - 2k or (4 , 4 , -27.

So/poxPrl=F) =5 = 6
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§12.5 Lines & Planes

Lines in R2
, a new perspective:

Example 6. Find a vector equation for the line that goes through the points P =

(1, 0, 2) and Q = (↔2, 1, 1).

9 :02 10 min) 9 : 12

=matb The line is all points

i&↑ To is
a vector

in the same

direction
as the lue.

Vector equation

-So1(t) = < 1 , 0 ,27 + + 5-3 ,
1

, -17

For telth

vector X
egns. -

or

parametric egus
llt)= <1-3t, t, 2- t) ,

T

x= 1 -3t

&y= t
,
tER

z=2-t
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Planes in R3

Conceptually: A plane is determined by either three points in R3
or by a single

point and a direction n, called the normal vector.

Algebraically: A plane in R3
has a linear equation (back to Linear Algebra! im-

posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

9 : 12 10 min) 9:22

Need :

* point two 1 . %. Vectors in place#Randd one normal ret
-

ax+ by + cz = d (two free vars)

Solns are ( , y ,
z) that Satisfy

(x, y1z) (a ,
b

, c) = d (1)

So given a fixed point (20, yo,20) in the pine then

(20,%0, z070 (a,
b, c) = d (2)

planepasyou to
So combry (1) &(2) we get

X / normal
vec

(2,4,77 - (10 , 40 ,207) · Garb, -= = La,b,c-

or a (x-u0) + bly-yol+c(z-zu)= 0
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Example 7. Consider the planes y ↔ z = ↔2 and x↔ y = 0. Show that the planes

intersect and find an equation for the line passing through the point P = (↔8, 0, 2)
which is parallel to the line of intersection of the planes.

9:22 25 min A 9 :37

S
①

②

noun
place 0x+ y - z = -z hi= So ,

1
, -1)

plane z x -

y +0z = 0 [2= (1
,
-

,0

SoI Vector in live is parallel

toxn2 (key idea
① planes meet since #C (planes not perallel)

② x n2 = [0 ,
1
,

- 1) x (1,1 , 0)

=I
= i !-i)% l +E/l

=E-Y- h = Su1 ,
1,1) Sanity Church

So live passing through
(-8,

0 ,2) and parallel to it is

f(t)= (- 8,
0 ,27 ++(- 1,

-
,
- 17
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§12.6 Quadric Surfaces

Definition 8. A quadric surface in R3
is the set of points that solve a quadratic

equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to

examine their cross-sections.

Example 9. Use cross-sections to sketch and identify the quadric surface x = z2+y2.

8 : 00 (15mn) 8 : 15 am

↑
Sphere of radius r

① (x- a) + (y -b) + (z- c) =r centered at (a,b,c)

② 2+y2 = 1 Cylinder of radius 1

extending along z-axis from lecture( on 5512/
(

-

Horizontal cross sections Idea : "Out" the surface by choosing a fixed

value = const , y= consty or zeconst,

e -y. Set ze const Ya
&

x=

y (z=d
z= 0 - x = 0+y Tx=y2+ 1

&

=> n = yz parabola (z=1 and z= -1)

z= 1 == Hyz parabola XI

z=1 => x= (1)+ y
=> x= 1 +y2 Some parabola

In general when z=R =x=
2
+y2 parabola opening right
w/ x-intercept le2

What about y= const or z= const?
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Example 9. Use cross-sections to sketch and identify the quadric surface x = z2+y2.

(cont.)

8 : 15 45 min) 8 : 30

prev . page

cross sections parallel
to backwall/yz-plane

e -y. Set ze const Ya x=y (z=d

Set= coust ↓
z= 0

= x = 0+y

Tx=y2+ 1

&

x = yz parabola (z=1 and z= -1)

x =0 = 0 = z2+ y2 single sol
z= 1 == Hyz parabola Zi

(z,y) = (0, 0)

z= 1 => x= (1)+ y
= 1 = 1 = z+y circle => x = 1 + y2 Some parabola

Z In general when z= R =) x=2
+y2 parabola opening right

H= =1 => - 1 = z2+y2 no solv
·

Ld w/ xe-intercept le2

= 2 = I = z+yi circle

So cross sections of

a= 4 = 4= z2+y
: coce

·=Y surface in cuts parallel

x= 1
toyz-plane are

=24= 4 circles-

If sezk then
Last is ye const

Cross sections R=z2+y2 circle of

y= 0 = U= z2t0 parabola parallel to zez-plane
radius he centred

y= ) => x= z= 1 parabola ↓ at (0,0) -

y= -1 = x= z+ (-12 same parabola z
y

= 0
&

-n y= /

gy= -

Let
Y

E
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8 : 30 (5 min) 8 : 35

& things to note

coeft of 22, y2z all have Z but no zi term

22 g y2 terms have same signThe same sign

no const term . const terms xy" pos reff, z2 neg,

x sy: differentsign
than z2 term

const form
, sensydney coeft z but no z

,
1232 oppo sigh

zu pos creft
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§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-

dimensional graphs in R2
and R3

as well. We said that a function r : R → R3

with r(t) = vt+ r0 produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number t and
its output is a vector. We graph a vector-valued function by plotting all of the

terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function r whose graph is

C is called the curve C, and r is called a of

C.

8 :35 [ min) 8 : 40

↑ Fixed&To,
t is a real variable

* lines FIt) = op + to
,
teR

* Circles FIt) = (coso ,
sino) 02

but can be literally any function like

·
= 22

= St ,
t)

tini
t= - 1

parametrizing parametrization
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Example 10. Consider r1(t) = ↑cos(t), sin(t), t↓ and r2(t) = ↑cos(2t), sin(2t), 2t↓,
each with domain [0, 2ω]. What do you think the graph of each looks like? How are

they similar and how are they di!erent?

Check your intuition

8 : 40 (min) 8 :4

Z

·...i
(1 ,0 ,

25)· -
①

L
&
Y

2 (10,0
&
Y

x x

to F
, (d)= (cold ,

Sir (d) , 00 = <1 ,
0

, 0)

(E) = (cos(T) ,
Sir(),h) = 0

,
2
, the]

· punchline : different graph/function even
when same rule but

3x DIFFERENT DOMAW

is

/TECHNOLOGY TIME
&



§13.2 Page 15

§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute lim
t→e

↑t2, 2, ln(t)↓.

And with continuity:

Example 12. Determine where the function r(t) = ti↔ 1

t2 ↔ 4
j+ sin(t)k is contin-

uous.

8 : 48
7 min

8 : 55

= ↳

L= /limthe I2en(t)

= Se ,
2

,
ene) = <e2,

2
, 1)

~ (t) = f(t)t + g(t)y + h(t4
↓ &d

Since Alti=t g(t)= and h sint

all are continuous ontheir domains, the

Function FCt) is continuous on

DARDgeDh = IR & (l-x . - 2V (2,2) v (2 ,03]MIR
-

So this
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And with derivatives:

Example 13. If r(t) = ↑2t↔ 1
2t

2
+ 1, t↔ 1↓, find r

↗
(t).

Interpretation: If r(t) gives the position of an object at time t, then

• r
↗
(t) gives

• |r↗(t)| gives

• r
↗↗
(t) gives

Let’s see this graphically

Example 14. Find an equation of the tangent line to r(t) = ↑2t↔ 1
2t

2
+ 1, t↔ 1↓ at

time t = 2.

8.55 (Smin) Idea : 15 Fit = [f(t)
, g(t) ,
hItt]

,

9 : 00

then (t = (f'lt) , git) , hilt]

F'(t) = [2- t , 17

Q : what is F (0)? r'(2)?

r(0) = [2 , 1) r'(ll = <@, 17

velocity vector at time +

Speed (scalar) at time +

acceleration vector at timet



9:00 40 min) 9: 10

F'(t) = (2- t
,
1)

↑ (2) = (0, 1) this vector is parallel to

thetangent line. ↑ So, 17

note that F(2) = (4-52 + 1
,
2-1) = (3, 17

SoP(3 , 1) is on the curve ,
so using the

Formula CH=p + to where P13 ,
1)

and te r'(z)

we get
l(t) = (3 , 17 ++0 , 1)

,

tEIR

is a parametrization of the live targent

to the curve at t=z.
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And with integrals:

Example 15. Find
∫ 1
0 →t, e

2t, sec2(t)↑ dt.

At this point we can solve initial-value problems like those we did in single-variable

calculus:

Example 16. Wallace is testing a rocket to fly to the

moon, but he forgot to include instruments to record his

position during the flight. He knows that his velocity dur-

ing the flight was given by

v(t) = →↓200 sin(2t), 200 cos(t), 400↓ 400

1 + t
↑ m/s.

If he also knows that he started at the point r(0) = →0, 0, 0↑,
use calculus to reconstruct his flight path.

Same idea: (b <f(t) , g(t ,h(t) dt

= [Sfdt, (ght dt , Jabh(t)dE]

So J.(t ,
et

, sect]dt = Jet ,
jeit ,
tant) I0

- Ste ,
tanli)) - To ,

2
,

07

= SE
,
ite-1) , tan()

JF(t)dt = 5(t) (inequal of velocity
is position

So S(t) = ))-200sinit, 200 cost, 400-Lydt

= [200csht+ C1 ,
200 sint+G Mot - 400Inlit)

& t=o
5(0)= (100 + 4 ,, c)

= ( ,
0

,
9) so 21-99 ,

c = 1
, C =1

and 5(t) = <100cos2t -100
,
200sint

, 400t - 400 In (1++7


