MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

* Oradescope Safety-Quiz 5/14 * WeBWork * Quiz O (Practice Quiz) not For a grade * PA \$12.1 (First peer assessment) CPs * PLEASE read the syllabus! * Piazza * HWHW CPs Goals for Today:

- Set classroom norms
- Describe the big-picture goals of the class
- Review \mathbb{R}^3 and the dot product
- Introduce the cross product and its properties

Class Values/Norms:

- Mistakes are a learning opportunity
- Mathematics is collaborative
- Make sure everyone is included
- Criticize ideas, not people
- Be respectful of everyone
- · Academic honesty
- . Learn new things.

Sections 12.1, 12.4, 12.5

6-10 Welcome

Big Idea: Extend differential & integral calculus.

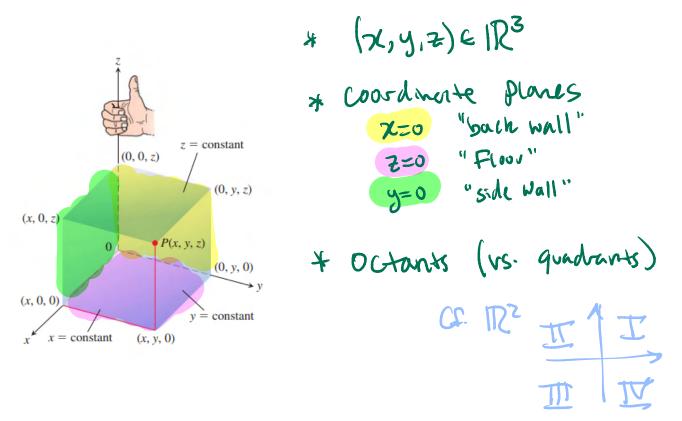
What are some key ideas from these two courses?

Before: we studied single-variable functions $f : \mathbb{R} \to \mathbb{R}$ like $f(x) = 2x^2 - 6$.

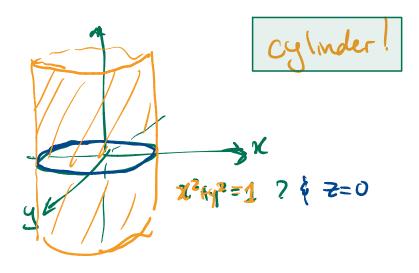
Now: we will study **multi-variable functions** $f : \mathbb{R}^n \to \mathbb{R}^m$: each of these functions is a rule that assigns one output vector with m entries to each input vector with n entries.

e.j. f(x,y,z) = (2x-3y, 4z, 21x-4y)asc linea! 20 $f(x,y) = (x^2 - 1, \cos x e^y, \ln(x+y)) \qquad \text{year, ...}$

§12.1: Three-Dimensional Coordinate Systems



Question: What shape is the set of solutions $(x, y, z) \in \mathbb{R}^3$ to the equation $x^2 + y^2 = 1$?



§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors $\mathbf{u} = \langle u_1, u_2, \ldots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \ldots, v_n \rangle$ is



In particular, two vectors are **orthogonal** if and only if their dot product is _____.

Example 2. Are $\mathbf{u} = \langle 1, 1, 4 \rangle$ and $\mathbf{v} = \langle -3, -1, 1 \rangle$ orthogonal?

$$\langle 1, 1, 4 \rangle \cdot \langle -3, -1, 1 \rangle = -3 - (+4 = 0)$$

yes

Goal: Given two vectors, produce a vector orthogonal to both of them in a "nice" way. We want The method to play nice with rector addition ? Scalar math That is:

^{1.}
$$U \times (\sigma + \omega) = U \times \sigma + U \times \omega$$

2. $CU \neq v = C(U \neq v) = U \times Cv$

Definition 3. The cross product of two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 is

Where
$$\hat{t}, \hat{J}, \hat{k}$$
 are just the stondard
basis vectors in \mathbb{R}^3
 $\hat{t} = \{1, 0, 0\}$
 $\hat{J} = \{0, 1, 0\}$
 $k = \{0, 0, 1\}$

8:47 §12.3, 12.4

Example 4. Find $\langle 1, 2, 0 \rangle \times \langle 3, -1, 0 \rangle$.

$$\langle 1,2,0\rangle \times \langle 3,-1,0\rangle = \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 3 & -1 \end{bmatrix}$$

= $\hat{k} \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$
= $(-1-6)\hat{k}$
= $(-7\hat{k}) \text{ or } \langle 0,0,-77.$

A Geometric Interpretation of $\mathbf{u}\times\mathbf{v}$

The cross product $\mathbf{u} \times \mathbf{v}$ is the vector

 $\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta)\mathbf{n}$

where \mathbf{n} is a unit vector which is normal to the plane spanned by \mathbf{u} and \mathbf{v} .

Since **n** is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is the area of the parallelogram spanned by **u** and **v**.

 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

Example 5. Find the area of the parallelogram determined by the points P, Q, and R. P(1, 1, 1), Q(2, 1, 3), R(3, -1, 1)

$$\vec{PQ} = \langle 2-1, 1-1, 3-1 \rangle = \langle 1, 0, 2 \rangle$$

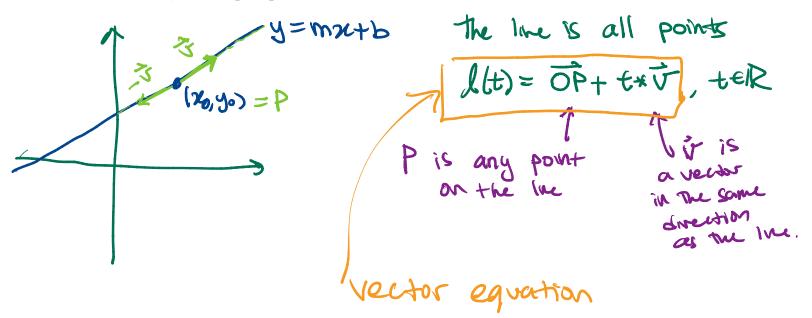
$$\vec{PQ} = \langle 2-1, 1-1, 3-1 \rangle = \langle 2, -2, 0 \rangle$$

$$\vec{PQ} = \langle 3-1, -1-1, 1-1 \rangle = \langle 2, -2, 0 \rangle$$

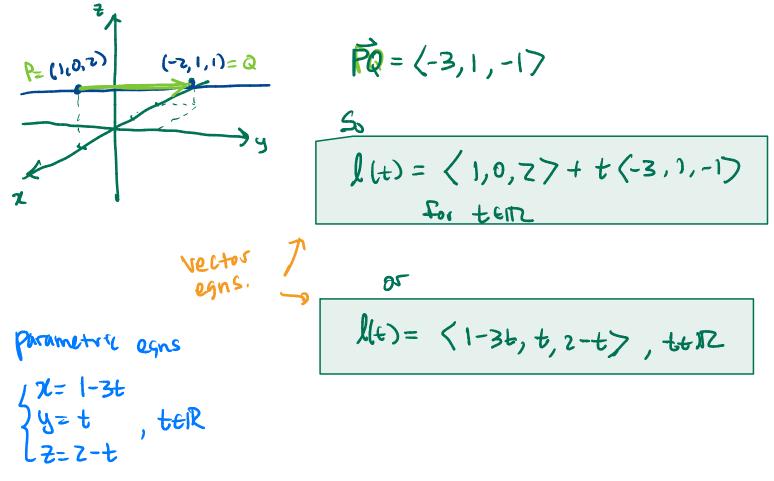
$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} 0 & 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & -2 & 0 \end{vmatrix} = \hat{c} \begin{vmatrix} 0 & 2 & 0 & -2 \\ -2 & 0 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ 2 & -2 & 0 & -2 \\ -2 & 0 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & 0 & -2 \\ -2 & 0 & -2 \\ -2 & 0 & -2 \\ -2$$

§12.5 Lines & Planes

Lines in \mathbb{R}^2 , a new perspective:



Example 6. Find a vector equation for the line that goes through the points P = (1, 0, 2) and Q = (-2, 1, 1).



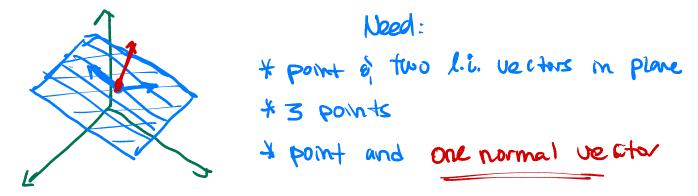
9:12812.5

9:22 Page 9

<u>Planes in \mathbb{R}^3 </u>

Conceptually: A plane is determined by either three points in \mathbb{R}^3 or by a single point and a direction **n**, called the *normal vector*.

10 In



Algebraically: A plane in \mathbb{R}^3 has a *linear* equation (back to Linear Algebra! imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

$$4:22$$
 §12.5 (15 min) (18 min) 9:37 Page 10

Example 7. Consider the planes y - z = -2 and x - y = 0. Show that the planes intersect and find an equation for the line passing through the point P = (-8, 0, 2) which is parallel to the line of intersection of the planes.

purl purl purl purl purl purl purl	plane 1 Plane z	0x + y - z = -z x - y + 0z = 0	$\vec{n}_{1} = \langle 0, 1, -1 \rangle$ $\vec{n}_{2} = \langle 1, -1, 0 \rangle$				
		vector in lone n, x nz (is perallel				
O Planes in		ñ, + cñz (plane					
$ \vec{n}_{1} \times \vec{n}_{z} = \langle 0, 1, -1 \rangle \times \langle 1, -1, 0 \rangle $							
	$= \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ 1 & -1 \end{bmatrix}$	Fz -1 0					
		$ - \hat{J} - \hat{J} + \hat{L}$					
	$= -\hat{\iota} - \hat{\jmath} -$	h = (-1, -1, -1)	Sanity Chuch				
So live pu	ssing through	(-8,0,2) and porul	el to Gris				
	((t)= <-8,0,2°	7++<-1,-17					

0/3	Week 1	Tue May 13	No class - orientation			Day 2	(15 mm) 8:15 am
. 00		Wed May 14	Lecture: 12.1, 12.4, 12.5			Day 3 - Safety-Quiz	(19 min) 8: 5am
_		Thu May 15	Studio: 12.1, 12.4, 12.5	Quiz 0: Practice	12.2, 12.3	Day 4, Rev. U-sub, 12.2-3	
\$12.6		Fri May 16	Lecture: 12.6, 13.1, 13.2			Day 1/Course registration deadline	Page 11

§12.6 Quadric Surfaces

Definition 8. A quadric surface in \mathbb{R}^3 is the set of points that solve a quadratic equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to examine their cross-sections.

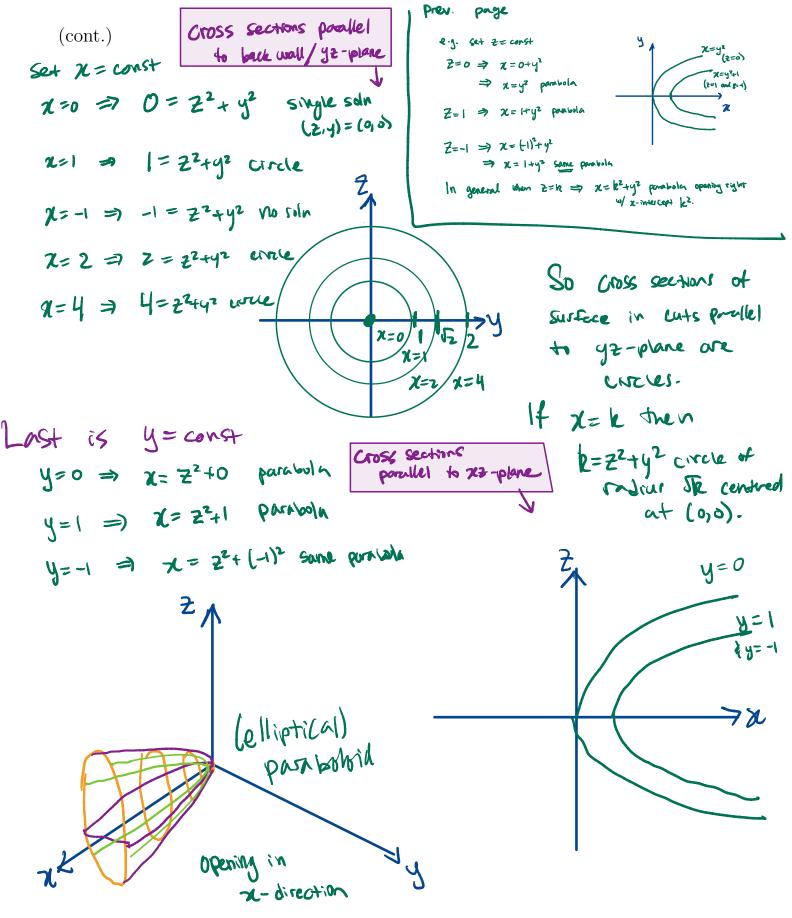
Example 9. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$. h

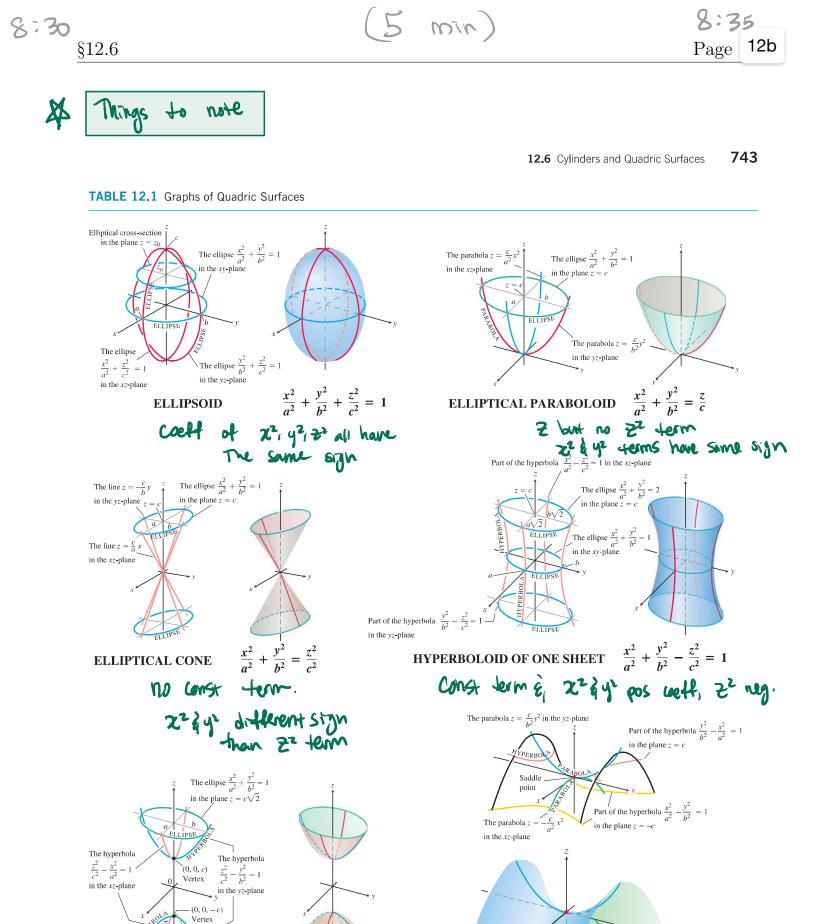
Horizontal cross sections
Idea: "cut" the surface by choosing a fixed
Value
$$\chi = const$$
, $y = const$, or $Z = const$.
 $2 \cdot j$. Set $Z = const$
 $Z = 0 \Rightarrow \chi = 0 + y^{2}$
 $\Rightarrow \chi = y^{2}$ parabola
 $Z = i \Rightarrow \chi = i + y^{2}$ parabola
 $Z = -1 \Rightarrow \chi = (-1)^{2} + y^{2}$
 $\Rightarrow \chi = 1 + y^{2}$ Same parabola
In general when $Z = k \Rightarrow \chi = k^{2} + y^{2}$ probable opening right
 $\psi' \chi$ -intercept k^{2} .

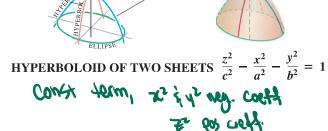
What about y = const or Z=Chst?

8:

Example 9. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$.







(5 min)

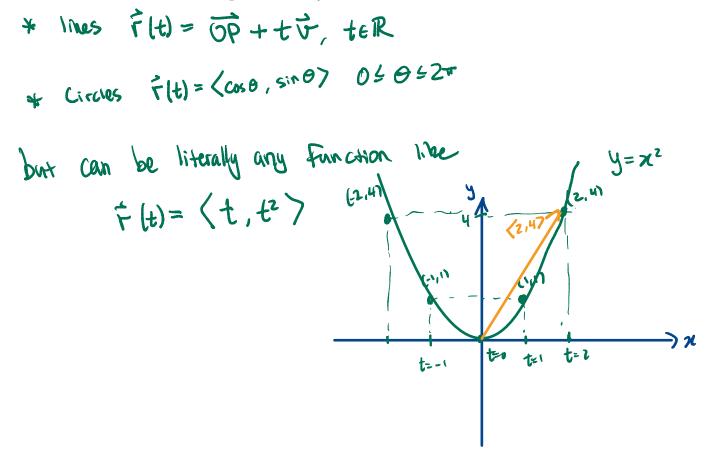
§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other onedimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

T_T Fixed it & to, the a real variable

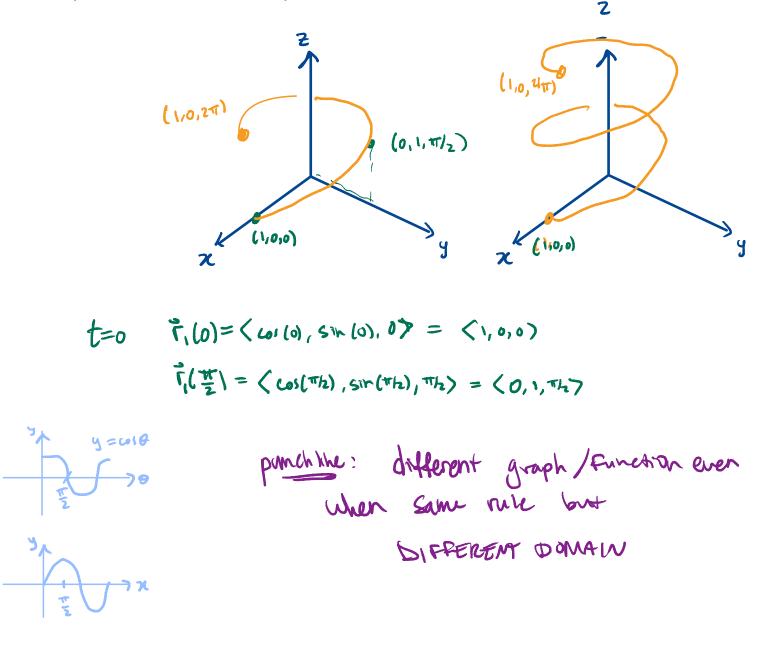
This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:



Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is C is called <u>parametrizing</u> the curve C, and \mathbf{r} is called a <u>parametrization</u> of C.

Example 10. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?



§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with <u>limits</u>:

Example 11. Compute $\lim_{t \to e} \langle t^2, 2, \ln(t) \rangle = \bot$

$$L = \left\langle \lim_{t \to e} t^2, \lim_{t \to e} 2, \lim_{t \to e} 2, \lim_{t \to e} 1, \lim_{t \to$$

And with <u>continuity</u>: **Example 12.** Determine where the function $\mathbf{r}(t) = \mathbf{f}(t) \uparrow \mathbf{f}(t) = \mathbf{f}(t) \uparrow \mathbf{f}(t) \mathbf{k}$ is continuous. Since $\mathbf{f}(t) = \mathbf{f}(t) =$

$$g:55 = (5min)$$
 Idea: IF $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, $\frac{g:00}{Page 16}$
then $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$

And with <u>derivatives</u>:

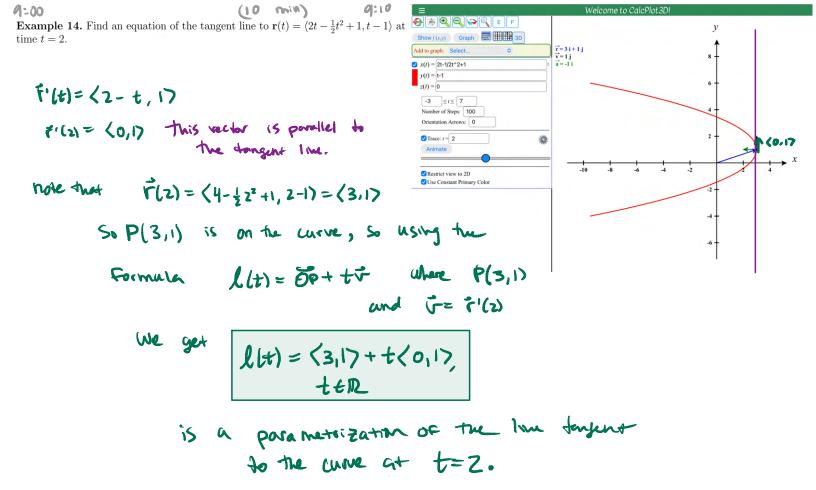
Example 13. If
$$\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$$
, find $\mathbf{r}'(t)$.
 $\mathbf{\overline{r}'(t)} = \langle 2 - t, 1 \rangle$
Q: what is $\mathbf{\overline{r}'(0)}$? $\mathbf{r}'(2)$?
 $\mathbf{r}'(0) = \langle 2, 1 \rangle$ $\mathbf{r}'(1) = \langle 0, 1 \rangle$

Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t, then

- $\mathbf{r}'(t)$ gives <u>Velocity vector</u> at time t
- $|\mathbf{r}'(t)|$ gives <u>Speed</u> (Scalar) at time t $\mathbf{r}''(t)$ gives <u>accelleration vector at time</u> t

Let's see this graphically

Example 14. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.



$$\frac{\$13.2}{\$13.2}$$
Some idea: $\int_{a}^{b} \langle f|t|, gtt), h|t\rangle dt$

$$= \langle \int_{a}^{b} f|t| dt, \int_{a}^{b} g|t| dt, \int_{a}^{b} h|t\rangle dt$$

And with integrals:

Example 15. Find $\int_0^1 \langle t, e^{2t}, \sec^2(t) \rangle dt$.

So
$$\int_{0}^{1} \langle t, e^{2t}, \sec^{2}t \rangle dt = \langle \frac{1}{2}t^{2}, \frac{1}{2}e^{2t}, \tan t \rangle \Big|_{0}^{1}$$

$$= \langle \frac{1}{2}, \frac{1}{2}e, \tan(1) \rangle - \langle 0, \frac{1}{2}, 0 \rangle$$

$$= \langle \frac{1}{2}, \frac{1}{2}(e^{-1}), \tan(1) \rangle$$

At this point we can solve initial-value problems like those we did in single-variable calculus:

Example 16. Wallace is testing a rocket to fly to the moon, but he forgot to include instruments to record his position during the flight. He knows that his velocity during the flight was given by

$$\mathbf{v}(t) = \langle -200\sin(2t), 200\cos(t), 400 - \frac{400}{1+t} \rangle \ m/s.$$

If he also knows that he started at the point $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, use calculus to reconstruct his flight path.

$$\int \vec{v}(t) \, dt = \vec{s}(t) \quad \left(\text{integral of velocity is position} \right)$$

$$\int \vec{s}(t) = \int \left(-200 \text{ sin } 2t, 200 \text{ cost}, 400 - \frac{400}{74t} \right) \, dt$$

$$= \left\{ \frac{200}{2} \cos 2t + C_1, 200 \text{ sint} + C_2, 400 t - 400 \ln (1+t) + C_3 \right\}$$

$$\hat{c}(t) = \left\{ 100 + C_1, C_2, C_3 \right\} = \left(0.1, 0 \right) \text{ so } C_1 = -99, C_2 = 1, C_3 = 1$$

$$\text{ and } \vec{s}(t) = \left\{ 100 \text{ corec} 2t - 100, 200 \text{ sint} + (400 t - 400 \ln (1+t)) \right\}$$