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§16.7 Stokes’ Theorem

Theorem 152 (Stokes” Theorem). Let S be a smooth oriented surface and C be

its compatibly orie.nted boundary. Let F be a vector field with continuous partial

o N
derivatives. Then
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Example 153. You try it! Suppose F = Pi+ Qj + Rk is a vector field in R*
with continuous partial derivatives. Compute the divergence of the curl of F, i.e.

V. (V xF).
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Theorem 140 (Green’s Theorem). Suppose C is a piecewise smooth, simple, closed
curve enclosing on its left a region R in the plane with outward oriented unit normal
n IfF=(P,Q)h ntinuous partial ([(r!‘il'lliil'l‘ﬁ around R, then
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Example 153 (DD). Let F = (—y, 2+ (2—1)2**"@) 22 4+4%). Find [[((VxF)-ndo
over the surface S which is the part of the sphere 22 + 3> + 22 = 2 above z = 1,

oriented away from the origin. @?’“m D

?./\ Flax ot _ gg @,@:}oy\ o

OA(

¥ ponmedcize S w/T‘(U\Nﬁ
C ¥ COmV\A\-Q f'..xa—/v\?\,

= \
-~ — >4 MM‘B ¥ Compnre UxF

wlaqts =2 ¥ Dn ey A

* o Soce Traegeal oFRe SRR
o“: F % = AS
( wC C
N prezamL A T C w FLO
e \ ¢'(v)
OOL‘. * WWR £ suls.
Wheyrrize ¥ indeyrnr & Wi “"qw‘)\ v

= (=A.
Ce ¢)= <c,o;t, st 1) , telom

TIE) = oty Cost 05

2~
O Flow = S (-'SWC«, Cosk 4 O, CosZt+sW’ L) (-s\wk, Cost, ¥
o

T TV
:S; S\ik + Gostx +0 % = y;“ 4 4=+t )0

= Lvw -0 1@



§16.7 Page 159

Question: What can we say if two different surfaces S; and S5 have the same

oriented boundary C'?
y “or oy v, &cFoT ds = Bgs|@x\:)on =y

Sy S2 Sz
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Example 154. Suppose curl F = (3" sin(2?), (y — 1)696# + 2, —ze‘”zm>. Compute the

net flux of the curl of F over the|surface pictured below,| which is oriented outward

and whose boundary curve is a unit circle centered on t@is in the plane y = 1.
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§16.8 Divergence Theorem

Theorem 155 (Divergence Theorem). Let S be a closed surface oriented outward,

D be the volume inside S, and F be a vector field with continuous partial derivatives.
Then
//F-ndaz// V-F dV.
S D

Example 156. Let F = (y'Z4esn62) ¢ — 27" 22 — 2) and S be the surface consisting
of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3,

together with top and bottom disks, oriented outward. Find the flux of F through

S.

Example 156. Let F = (y1234esm(yz), y—x° 2% —z) and S be the surface consisting
of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3,
together with top and bottom disks, oriented outward. Find the flux of F through
S.
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§16.8 Divergence Theorem
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Theorem 155 (Divergence Theorem). Let S be ¢ closed surface/oriented outward,

D be the volume inside S, and F be a vector field unth continuous partial derivatives.

Then JDT
g ://SF-nda://Dv-de. = SSSDAN FdV
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Example 156. Let F = (y'?*e5002) y — 2" 22 — 2) and S be the surface consisting
of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3,
together with top and bottom disks, oriented outward. Find the flux of F through
S. — 2
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EXAMPLE 7

ri1) = (cos i + (sin 1.0 = ¢ = 2 (Figure 16.19),

Solution  On the circle, F = (x

two “sides.” then at each point the negative ~(r, X

14.1 Functions of Severs! Varisbles 795

DEFINITIONS A point (x, ¥,) in a region (sct) R in the xy-plane is an interior
point of K if it is the center of a disk of positive radius that lies entirely in R
(Figure 14.2). A point (x,. ) is 3 boundary point of R if every disk centered at
(%5, ) contains points that lsc outside of R as well as points that lie in R. (The
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points, A region is clased if it contains all its boundary
points (Figure 14.3).
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FIGURE 14.3  latericr points and boundary poiss of the usit disk in the planc

As with a half-open interval of real numbers [, b), some regions in the plane arc
ncither open nor closed. If you start with the open disk in Figure 14.3 and add to it some.
but not all, of its boundary points, the resulting set is neither open nor closed. The bound-
ary points that are there keep the sct from being open. The absence of the remaining

boundary points keeps the set from being closed

DEFINITIONS A regiom in the planc is bounded if it lies inside a disk of finite
radius. A region ts unbounded if it is pot bounded.

16.2 Vector Fieids and Line Infegrals: Work, Creufation, and Flux 965

Find the circulation of the field F = (x ~ v + 1j around the circle

-9l + 2 = (coss

- sin 0l + (cos N, and

"’: « (=sinfi + (cos nj

= —sinrcost + sin’r + cos't

i
dr

gives

As Figure 16.19 suggests, a fluid with this velocity field is circulating counterciochwise
around the circle, %0 the circulation is positive. a

Flux Across a Simple Closed Plane Curve

A curye i the xy-planc is simple if it docs net crons itself (Figure 16.20j, When a curve
starts and ends at the same point, it i
Tluld is entering oc leaving  reghon enclosed by 4 smooth simple closed curve C in the xy

plane, we calculate the line integral over € of F-n, the scalar companent of the flaid’s
vebocity field in the direction of the curve’s cutward-pointing nomaal vector, We use only
the nomal componcnt of F, while ignoriag the tingential component. because the nomal
compoacet leads 0 the flow across C. The value of this kmtcgral is the flux of F across
Fliex is Latin for flow, bet many flux calculitions imvolve a0 metion at all, 1f F were an
electric field oc a nagaetic fickl, for instance, the integral of F+n is stll called the flux of
the fickd across C.

chosed curve or loep. To find the rate at which &

DEFINITION  1f € is a semoosh simple clased curve in the dorain of a continuous
vector ficld F = Mix, )i + Mx, y)j in the plane, and if n is the cotward-point-
ing unit normal vector on €, the flux of F across Cis

Flux of F across € /I’~nJ: ©
3
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Orientation of a Surface

The curve C in a line integral inkerits a natural orientation from its parametrization r(r)

because the parameter belongs to an interval @ = ¢ = b directed by the real line. The

usit tangent vector T along € points in this forward direction. For a surface S, the
parametrization r(x, v) gives a vector ¥, X ¥, that is normal 1o the surface, but if § has
v, is also noemal o the sarface, so
we need 10 choase which direction to use. For example. if you look at the sphere in
Figure 16,35, %t any point on the sphere there is & normal vector pointing inwand

toward the ceater of the sphere and anotber opposite normal poisting outward. When

we specify which of these narmals we are going #o use consistently across the entire
surface, the surface is given am ovientation. A smooth surface § is erientable (or two-

sided) if i is possible 1o definc a field of unit sormal vectors m oa § which varies con-
tinuously with position. Asy patch or subportion of aa orentable surface is oricatable.

Spheres and other smooth closed surfaces in space (smooth surfaces that enclose sol-

i) hre oricntable. By convention. we wsialy choose m on 3 closed surface t0 poist
outwan

Once n has been chosen, we say that we have orfented the surface, and we call the
surface together with its normal ficld an oriented surface. The vector m o amy point is

called the positive direction at that point (Figure 16.49).

The Mabius hand ia Figure 16.50 is not oricatable. No matter where you start t con
struct a contingoas unit noemal field (sbown as the shaft of a thumitack in the figere),
maving the vector continuously aroend the surface in the manner shows will return it to
the starting point with a direction opposite 0 the one it had whea it started out. The vector
at that pownt cannot point both ways and yet i must if the fiekd is 1o be continuous. We
conclude that no sech fiekd cists

Surface Integrals of Vector Fields

In Section 16.2 we defimed the line integral of a vector ficld akong a path Cas [ F-Tdy.
where T is the umil tangent vector o the path pointing in the forward oriented direction
By analogy we now have the following corresponding definition for surface imcgrals.
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Math 2551 Worksheet: Review for Exam 3

1. Set up an iterated integral in spherical coordinates for / / / 2% dV where E is the region
E
between the spheres 22 + 3%+ 2° = 4 and 2® +y* 4 2° = 25 and inside z = — /3 (2% + 3?).

2. Set up an integral that computes the volume of the solid which is bounded above by the
cylinder z = 4 — 22, on the sides by the cylinder 22 4 y? = 4, and below by the zy-plane
using

(a) Cartesian coordinates

(b) cylindrical coordinates
Which integral would you rather evaluate and why?

3. Find an integral that computes the mass of the wire which lies along the curve y? = 23

from (0,0) to (1, —1) and has density function p(x,y) = 2zy*.

4. Show that the field F = 2xi — ?j — Hﬁ%k is conservative, find a potential function, and
use it to compute the integral

4
2
/C2xdx—y dy_1+z2 dz

where C' is any path from (0, 0,0) to (3,3,1).

5. Compute [, (6y +z) dz + (y + 2z) dy using any method, where C'is the circle (z —2)* +
(y—3)* =4

6. Find the flux of the field F = yi—xj+k through the portion of the sphere 2% +y?+2? = a?
in the first octant in the direction away from the origin.

7. Use Stokes’ theorem to show that the circulation of the field F = (2z, 2y, 2z) around the
boundary curve C' of any smooth orientable surface S in R? is 0.

8. Find the outward flux of F = (zi + yj + zk)/+/2? + y? + 22 through the boundary S of
the “thick sphere” D given by the points satisfying 1 < 22 + 9% + 22 < 4.



