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§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then fx represents the rate of change of z

in the x-direction and fy represents the rate of change of z in the y-direction. What

about other directions?

8:00 15 min) 8: 05

Level Sets for z=R.
↓ Shows all (2 ,4) pairs S. t · flug)= Le

N

Au
- 7 In measures the change in E-value

↓ v
asi-value increases

/

what about this direction parelled do
the level sets ? z=k so Drf(p)=0

&

fy measures the change in z-value as y-value increasesI
What about THIS direction ORTHOGONAL d

the level Sets z=l ?

Now Duf(P) is st in this direction
-
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Let’s go back to our hill example again, h(x, y) = 4 � 1

4
x
2 � 1

4
y
2. How could we

figure out the rate of change of our height from the point (2, 1) if we move in the

direction h�1, 1i?

Definition 62. The of f : Rn ! R at the point p

in the direction of a unit vector u is

Duf(p) =

if this limit exists.

E.g. for our hill example above we have:

8: 05 10 min
8: 15

Recall Dh = [*xy]
Y ↑
(1, 1)= and so h(z , i)= 4 -1 - y = 1/4

igpen, and Dhlec = [-1 ]
111 Su

IDEA : normalize if to a unit vector a

do difference quotient

① u=V = 72%]

② limh/phil-h lim2, 1)+t[+2,r)) -h(2 ,1)
I

to 0 t t-o t

t -I·
-

directional derivative

limi

D)h(2 , 1) = 2 tz
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Note that Dif = Djf = Dkf =

Definition 63. If f : Rn ! R, then the of f at p 2 Rn is the

vector function (or ) defined by

rf(p) =

Note: If f : Rn ! R is di↵erentiable at a point p, then f has a directional derivative

at p in the direction of any unit vector u and

Duf(p) =

8 : 15 8 min 8 : 23

Ex fy fz

(the regular or "Standard" directional derivatives

gradient
Of grad f

Df()T

or
= <fu

,
(i)
,
Fulp) , ..., fenti)

Example Ubu) = 4-[x2-542 tun Dh =[xy)
and Oh=].↳post

#for dot product of
grad of / direction
vector u

Examp
. DE)h(2 , 1) = 0h( , 1) ·Fitz)=

= [i](
=-) = E
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Example 64. You try it! Find the gradient vector and the directional derivative of

each function at the given point p in the direction of the given vector u.

a)f(x, y) = ln(x2 + y
2),p = (�1, 1),u =

⌧
1p
5
,
�2p
5

�

b)g(x, y, z) = x
2 + 4xy2 + z

2, p = (1, 2, 1), u the unit vector in the direction of

i+ 2j� k

8:23 10 Min 8:33

47

Of = /] =[= (i)

and Dafil= Cl . (T=+Es = Ye

17

Og=y (= Og(=
v= (1

,
2 ,-1) -= = T%, % : "No

so Dighp) = (in%=
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Example 65. If h(x, y) = 4� 1

4
x
2� 1

4
y
2, the contour map is given below. Find and

draw rh on the diagram at the points (2, 0), (0, 4), and (�
p
2,�

p
2). At the point

(2, 0), compute Duh for the vectors u1 = i,u2 = j,u3 = h 1p
2
,

1p
2
i.

Note that the gradient vector rf is to the level curves of the

function .

Similarly, for f(x, y, z), rf(a, b, c) is

8 :37 10 min
8 : 43

Oh = [h] =[
D e(2 ,0) Uh(2 ,d = ( )
: "No e 10,4) Oh104) = ( -2)
-j⑰· e-) OhFr ,-) = []

What can we notice?

* all point towardster (highest point on
hill

* They all point perpendicular to level set lives

* farther away
contendermeans longer gradient (later 110hl)

* Oh points in
direction of greatest ascent
--

up the hill

perpendicular
f(x,n)=z

orthogonal to the LEVEL SURFACES
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Example 66. You try it! Sketch the curve x2+ y
2 = 4 together with (a) the vector

rf |P and (b) the tangent line at P (
p
2,
p
2). Be sure to label the tangent line with

the equation which defines it.

x

y

8:43 10 min
8: 53

If = (2]eP(Er)A(B)=C
-
- * If= #+8= 16 = 42

Y 7)1) orth. to Vflp), so,

e(t) = <E ,
2) + +(1 , -1)

line: y
= -x+252 (So m=1)

Y= - x+b and passes
than (i ,2)

So E = -Eth

=> ze= b
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8 : 53 8: 55

2 min

/P
zo min
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§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F (x, y, z) = k. How can we find an equation

of the tangent plane of S at P (x0, y0, z0)?

�4 �2 0 2 4 �5

0

5
�40

�20

0

x
2 + y

2 + z = 10, P = (�1, 3, 0)

9 : 15 10 min 9 :25

* need In normal rector

& use plane equation· a(x-xo)+bly-yo)+ C(z -zo) =0
where h= (a 1b, c).

! # LEVE(p) is normal to (!!!)
the surface F(p)= R .

So O Identify Fluxiz) such that Fluy , z) = b defines the surface

②Compute the gradient VF is evaluate a

③ write plane equation

Sh ① F(x ,y ,z) = x+ y2+z

② VE = (2n , 2 y , 17 ep
=(1

, 3,0) at UF=/-2 , 6, 17

③
-2(x+1) + b(y -3)+ z =0
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Example 67. Find the equation of the tangent plane at the point (�2, 1,�1) to

the surface given by

z = 4� x
2 � y

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the

tangent plane is

This should look familiar: it’s

A :25 10 nit
9 :35

f(x, y)
-

①IdentifyF: F(x , y , z) = 4-x y - z
② Find n : VF = (-2x , -1 ,

- 1) ep = -2 , 1 ,1) ther

VF(p) = H ,
= 1 ,-17

③Plane equ: 4(x+2) - (y- 1) - (z+1)=0

fr expanding the E part and then

rearranging We
have

z = -1 + 4(x+2) - (y - 1)
un~

↑(a ,b) + fulab)(x - a) + fy(a,b)(y-b)

This is just the linearization of z
=fun)

z = f(a ,b) + fu(a,b)(x -a) + fy(a,b)(y-b)

The linearization
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Example 68. You try it! Consider the surface in R3 containing the point P and

defined by

x
2 + 2xy � y

2 + z
2 = 7, P (1,�1, 3).

Identity the function F (x, y, z) such that the surface is a level set of F . Then, find

rF and an equation for the plane tangent to the surface at P . Finally, find a

parametric equation for the line normal to the surface at P .

Surface is level set

① F(x, y , z) =x+2xy -y+z =k ,
h=7

② F =

z e)F=I
③ place en becomes O=4 (y + 1) + 6 (z -3) = 0
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§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said rf(a, b) points in the

direction of greatest change of f .

Back to the hill h(x, y) = 4� 1

4
x
2 � 1

4
y
2.

What should we expect to get if we compute rh(0, 0)? Why? What does the

tangent plane to z = h(x, y) at (0, 0, 4) look like?

8:00 10 min 8 : 10

Th = [Ex zy] So 2010

#Xy Th(0,0) = Co O]

means "the path of steepest

ascent is NOT to
MOVE atall

! "

Tangent plane equation
for Effacal

z = f(a ,b) + fu(a,b)(x -a) + fy(a,b)(y-b)

In this case

Sim idea z = f(0 , 0) + fu(0 ,0)(x- 0)+ fy(d)(y -0)

z = 4 + On +by

So just z = 4

parallel to theky-plane
Che floor
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Definition 68. Let f(x, y) be defined on a region containing the point (a, b). We

say

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

In R3, another interesting thing can happen. Let’s look at z = x
2� y

2 (a hyperbolic

paraboloid!) near (0, 0).

This is called a

Notice that in all of these examples, we have a horizontal tangent plane at the point

in question, i.e.

Definition 69. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) = or where Df(a, b)

is called a of f .

8: 10 15 min 8 :25

local maximum &

local minimum ↳

#

----all the graph -
-Graph: points

have smaller (or equal) -nicen
m----

z-value (height) near the I

--

local maximum. "local" max bic can be
several peaks

Domain

: - For all m in local min vs . Localmaxthe DISK the

function value
- flu

,y) <fla,b)

saddle point

graph:

D
Dflaib) does not exist (DNE)

MAX/MIN Occurs claib) If
either Df(a ,b) = 10 of O
-

- Uf(aib)= <0 ,07 = [07

29.in]
DF isDue & 10,0

[00] is DNE

critical point
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Example 70. Find the critical points of the function

f(x, y) = x
3 + y

3 � 3xy.

8:25 10 min 8:35

Df = [3x2-3y 3y2 -3x]

Need Df(ab) = 10 0)

So need to

all pairs cond-b. . .

So

=>a
Sub D into ② to get ( = @4=a

=> a"-a =0

=> a(a-1) =0 Set of
critical

- a=0 or =1

and be=a so of points.

=>ora= 1

(a,b)= &(0,0), (1, 1)3

Q : Should we worry about crit points
from Df being DNE

?

A: nothing to worry
about here. The function

fly) = x3+ y3-3xy is continuous everywhere

in its domain /R

(as are ALL POLYNOMIAL functions
!)
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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2

8:35 10 min
8%45

Df = [3 3y2+ 4y]

NO CRIT POINTS Since

DF +To OS For

any (n,u) El, So No

Dg = [-since coss] = 10 o)

if x=+, ke1.

but Df(0,0) # (0 O)
So No

Dh = [ii] is

B & (0 ,0

BUT (0,0) not in the
DOMAI Of h !! So NO

DR = [Ix 2y] and

Dk(0,0) = To O] so

yes
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x, y) at (a, b) is

Hf(a, b) =

Theorem 72 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and

f has continuous second partial derivatives. Then we have:

• If det(Hf(a, b)) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum

• If det(Hf(a, b)) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum

• If det(Hf(a, b)) < 0, f has a saddle point at (a, b)

• If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if f : Rn ! R has a critical point at p then

• If all eigenvalues of Hf(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

• If all eigenvalues of Hf(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

• If some eigenvalues of Hf(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

• If all eigenvalues of Hf(p) are positive or zero, f may have either a local
minimum or neither at p.

• If all eigenvalues of Hf(p) are negative or zero, f may have either a local
maximum or neither at p.

8: 45 3 min 8 : 48

JD27(a -b) = [Eucab Aryana

No Hf=Dif
is symmetric so glab)
- -

① all eigenvalues are real

② matrix is orthogonally
diagonalizable,.. etc .

w

-of
when net deta=didalo

T iff Didz nonzero
~/ Same Sign
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Example 73. Classify the critical points of f(x, y) = x
3 + y

3 � 3xy from Example

70.

8: 48 5 min 8 : 53

fry
Df = [3x23y 3y23x] (a,b)- <(0,0), (1, 1)3

* Seto
points.

fax = 62 fay = -3

fyn = -3 fyy = by
so D2f=(]

So , &10,0 Df10,0) = (_] and det D
=+10 ,%)= - 930

So 10,0) is location of a
saddle point

and (11) D2A11, 11 = (3] and det D2f(1,= 36-
=27>8

and fun(1, 1) = 6 30
So (1, 1) is location of a local minimum

Recall :

#concre concaveDoE
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Two Local Maxima, No Local Minimum: The function g(x, y) = �(x2� 1)2�
(x2y � x � 1)2 + 2 has two critical points, at (�1, 0) and (1, 2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have f(a, b) �
f(x, y) for all (x, y) in the domain of f . A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x, y)

attains a global minimum & maximum.

Closed:

Bounded:

 
 

8:53 5 min
8 :58

This can't happen in
* ↓ one variable case

-

->M

-

Contains all
=>

>

boundarypaints
T

·

aXxX
t

7

contained
in a lardise

No

↑ X NO

-
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Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

8 :58 7 min 9 :05

Need

& Vf(a,b) = 0
-

Y
=

=>

&0 :
Yx

S1 : y= 4

Df = [8x-4y -4x+2] /
Crit points are (9 ,b) Sit .

E84-43 =0 =)Sa G2b-4a+2 = 0 E
So liky) = (12 , 1) is the only crit point is (12 , 1) in M??

and it is in R
is YIx2(2 ,?

k()=
Sep2 : Find cuit points of f on boundary. &

Dy=x f(x, y) = f(x , x2) = 4x2- 42x
+ 2x2 = Ox2-423

↑
->Dy= 4 f(x , y) = f(x,4) = 4x2- 4x*4

+ 2x4 = 4x- 16x +8

Find ouit points
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Example 76. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.

(Cont.)

9 : 05 18 min 9: 15

Sep2 : Find cuit points of f on boundary.

Dy=x f(x, y) = f(x , x2) = 4x2- 42x
+ 2x2 = Ox2-423

g(x) = 6x2-4x3
=> g(x) = 12x

-12x = 12x()
- x) = 0 i x=0

a

x= ) .

So Dy =22 crit points
are 10,07 (1, 1)

Dy= 4 f(x , y) = f(x,4) = 42 - 4x*4 + 2*4 = 4x- 16x +8

g(x) = 122
- 16x +8

=>j(x) = 8x
- 16 = 0

= x
-2 = 0 =

1=2 .

So Dy= 4 crit point is (2 , 4)

Step3 : Evaluatef e crit points i endpoints of bounds
1-2,4) boundary

endpoints

(x, y) f(x,u) Y
X (2,4) y= 4

↓

(2 , 1) A ·10,03 O
&

(1, 1) 2 point (E , 1)
(=2,4) 56 ·

Max of f or R & (-2 ,4)

(2 , 4) -8 MIN or forR & (74)

I
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§14.8 Constrained Optimization, Lagrange
Multipliers

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a constraint, g(x, y) = c.

Example 77. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

Objective function:

Constraint equation:

9: 15 10 min
9:25

=> largest h-value

h(x,y) = 4-Ex- jyz (thingete)
&

(
=

3 (conditionthatmust
#A : Solve Uh= Jog

Oh = [Ex=Y] and Eg: (2 17
& g(x,y) =3

=> Dix = /x FROMQso

SthdY E either x=8-③ y= 3-x or d=E

If K=0

&=0 (y) =(0)

If d=2
So (x,4) = (2 ,1) or (-2,1) d= 12

= x= 4 = x= 12.
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Example 77. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

(Cont.)

9 :25 5 min 9 :30

Solve

(x,y) = (0 .3) (4) = (2 ,1) or (-2, 1) Th = Jog
kg(x,y) =3 .

(2,4) h(x ,y)

(0,3) 1075

(2, 1) 2075

(2
, 1) 2075 12 ,lis)

2 , 120 to

*
So MAX h-value on the new hiling

trail is
h=2075 which

occurs & (2 , 1) ; (-2, 1).
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Method of Lagrange Multipliers: To find the maximum and minimum values

attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points

where rf(x, y, z) = �rg(x, y, z) and g(x, y, z) = c and compute the value of f at

these points.

If we have more than one constraint g(x, y, z) = c1, h(x, y, z) = c2, then find all points

where rf(x, y, z) = �rg(x, y, z) + µrh(x, y, z) and g(x, y, z) = c1, h(x, y, z) = c2.

Example 78. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.

9:30 10 Min 9 : 40

z= xy + 4
? No

Oectivefunction :
Alyz=y+ z2 Yes !

" distance from

origin" is

thing to minimize.
constraint : g(x , y, z) = xy+ 4 - z

=
= 0 IDEA FROM CALL 1

-

minimize instead

Solve
d2 = f(x,y ,z) = x2+y + z

no square root, easierVf = J89 &f= [8g=z) ( w/ same answer (
& g(x,y ,z) =0

Cel : if z =o then

So Solve 02x= Jy ⑭ zx= Jy plug D into
②2y = Jx ⑳ Zy = JaE E

↑

zy = /(2)= Hy = jy- ③2z = -2)z ③ xy = - 4

f ④xy + 4 - z2 = 0
=> y(4 -(2) =0

Start here : z+ Jz =0 So z=0 ord=
= z() + 1) =0

=> y=0, 6=2
or j =-2

If X= =2 then If y=0 tren

DaXF4 impossible !⑭ 2x= -2y
② zy= -2x =

x=y If d=z Zx= ZyS tren

O zyn
x=y③ xy=

-4 xy =
-4 E =>

xy= -4

=> (x, y,z) = (2,-2,0) or (2,2,0) ↓ impossible!
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Example 78. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.

(Cont.)

9: 40 10 min 9 :50

Casez : J = -

So Solve ①2x= by plug in ⑪ into
②2y = Jx ⑯ 2x= - y 2)-2x) = -xE③2z = (+(2z) ⑬ Zy = -x => Hu =x
④xy + 4 -z = 0 ⑬ xy+4

- z2= 0
=> x=0

and so y =0

Then # says 0+4-z=0

time to evaluate ! => z= 4

(x,y ,z) f(x, y , z) = x+y+ z2 => z= 12 .

(2 , -2,0

I
4 +4 +0 = 8

X MAX

So
(x,y ,z) = 10,0, 12)

distance

(2, 2,04 + 4 + 0 =84 is=2

10 ,0, 2) 0 +o + 4 = 4X MIN

↓ distance is F = 2
10, 0, -2)0 + 0 + 4 = 4 b

So the points on
The Surface g(u, y)=
/ MN distance

to origin are

10
,0,2) & 10

,
0 , -2)

↳/ distance 2


