

Idea: Suppose D is a solid region in \mathbb{R}^3 . If f(x, y, z) is a function on D, e.g. mass density, electric charge density, temperature, etc., we can approximate the total value of f on D with a Riemann sum.

$$\sum_{k=1}^n f(x_k, y_k, z_k) \Delta V_k,$$

by breaking D into small rectangular prisms ΔV_k .

https://strawpoll.com/61gD939KLZw

Taking the limit gives a

friple integral : $\iiint_D f(x, y, z) \, dV$

Important special case:

$$\iiint_D 1 \ dV = \underbrace{\text{Volume}}_{}$$

Other important spatial applications:

TABLE 15.1 Mass and first moment formulasCodeside for a prevent to a p

(me

Example 102. 1. How to do the computation:

Compute
$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx = \int_{0}^{1} \int_{0}^{2-x} z \int_{0}^{2-x-y} dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} 2-x-y \, dy \, dx = \int_{0}^{1} 2y - xy - \frac{1}{2}y^{2} \Big|_{0}^{2-x} dx$$

$$= \int_{0}^{1} (2-x)^{2} (1-\frac{1}{2}) \, dx = \frac{1}{2} \int_{0}^{1} (2-x)^{2} \, dx = \frac{1}{2} \int_{0}^{1} (4-4x+x^{2}) \, dx$$

$$= \int_{0}^{1} (2-x)^{2} (1-\frac{1}{2}) \, dx = \frac{1}{2} \int_{0}^{1} (2-x)^{2} \, dx = \frac{1}{2} \int_{0}^{1} (4-4x+x^{2}) \, dx$$

$$= \frac{1}{2} (4x - 2x + \frac{1}{3}x^{2}) \Big|_{0}^{1} = \frac{1}{2} (4 - 2 + \frac{1}{3}) - (0 - 0 + 0) \Big|$$
2. What does it mean: What shape is this the volume of?
2. What does it mean: What shape is this the volume of?
3. How to reorder the differentials: Write an equivalent iterated integral in the order dy dz dx.

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dy \, dz \, dx.$$

$$\int_{0}^{1} \int_{0}^{2-x-y} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \, dz \, dy \, dz.$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \, dx \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \, dx \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \, dz \, dy \, dx.$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \, dz \, dy \, dz.$$

Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

(a)
$$\int_{1}^{e} \int_{1}^{e^2} \int_{1}^{e^3} \frac{1}{xyz} \, dx \, dy \, dz$$

(b)
$$\int_0^{\pi/3} \int_0^1 \int_{-2}^3 y \sin z \, dx \, dy \, dz$$

Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

(a)
$$\int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{xyz} dx dy dz$$

$$= \int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{2}} \frac{1}{yz} \ln(x) \Big|_{1}^{e^{2}} dy dz = \int_{1}^{e} \int_{1}^{e^{2}} \frac{1}{yz} + 3 dy dz$$

$$= \int_{1}^{e} \frac{3}{z} \ln y \Big|_{1}^{e^{2}} dz = \int_{1}^{e} \frac{3}{z} (z-0) dz = 6 \ln z \Big|_{1}^{e} = 6 - 0$$

$$= 6$$

(b)
$$\int_{0}^{\pi/3} \int_{0}^{1} \int_{-2}^{3} y \sin z \, dx \, dy \, dz$$

$$= \int_{0}^{\pi/3} \int_{0}^{1} \int_{-2}^{3} y \sin z \, dx \, dy \, dz = \int_{0}^{\pi/3} \int_{0}^{1} 5y \, \sin z \, dy \, dz$$

$$= \int_{0}^{\pi/3} \frac{5}{2} \sin z \cdot y^{2} \Big|_{0}^{1} \, dz = \int_{0}^{\pi/3} \frac{5}{2} \sin z \, dz$$

$$= -\frac{5}{2} \cos z \int_{0}^{\pi/3} = -\frac{5}{2} \left(\cos(\pi/3) - \cos(0) \right)$$

$$= -\frac{5}{2} \left(\frac{1}{2} - 1 \right)$$

$$= \frac{5/4}{4}$$

1 Proj

We will think about converting triple integrals to iterated integrals in terms of the

Projection of D on one of the coordinate planes.

(x,y) & Proj(D) # (x,y,z) ED for some ZEIR

Case 1: *z*-simple) region. If *R* is the projection of *D* on the *xy*-plane and *D* is bounded above and below by the surfaces z = h(x, y) and z = g(x, y), then

$$\iiint_D f(x, y, z) \ dV = \iint_R \left(\int_{g(x, y)}^{h(x, y)} f(x, y, z) \ dz \right) \ dy \ dx$$

Case 2: *y*-simple) region. If *R* is the projection of *D* on the *xz*-plane and *D* is bounded right and left by the surfaces y = h(x, z) and y = g(x, z), then

Case 3: *x*-simple) region. If *R* is the projection of *D* on the *yz*-plane and *D* is bounded front and back by the surfaces x = h(y, z) and x = g(y, z), then

$$\iiint_D f(x, y, z) \ dV = \iint_R \left(\int_{g(y, z)}^{h(y, z)} f(x, y, z) \ dx \right) \ dz \ dy$$

Example 104. Write an integral for the mass of the solid D in the first octant with
$$2y \le z \le 3 - x^2 - y^2$$
 with density $\delta(x, y, z) = x^2y + 0.1$ by treating the solid as a)
 $2 \le \text{simple}$ and b) x-simple. Is the solid also y-simple?
 $2 = \text{Simple}$ $\iint_R \int_{g(x_0)}^{h(x_0)} \delta(x, y, z) dz dy dx = M$
How to find R projection of D solid?
 $(x, y) \in R$ if $(x, y, z) \in D$ for some $z \in R$.
The surface $z = 3 - x^2 - y^2$
But path/plane $z = 2y$
 $\Rightarrow 3 = x^2 + y^2 + 2y$
 $\Rightarrow 4 = x^2 + (y+1)^2$
 $1 = 4 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 - y^2$
 $(x - y) = 1 = x^2 - y^2 = 2y$
 $\Rightarrow 4 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1 = x^2 + (y+1)^2$
 $(x - y) = 1$

Douglas	Withers Grasting of innermost
	Choose a variable appearing exactly twice for the next integral.
Rule 2:	After setting up an integral, cross out any constraints involving the variable just used.
Rule 3:	Create a new constraint by setting the lower limit of the preceding integral less than the upper limit.
Rule 4:	A square variable counts twice.
Rule 5:	The region of integration of the next step must lie within the domain of any function used in previous limits.
Rule 6:	If you do not know which is the upper limit and which is the lower, take a guess - but be prepared to backtrack.
Rule 7:	When forced to use a variable appearing more than twice, choose the most restrictive pair of constraints.
Rule 8:	When unable to determine the most restrictive pair of constraints, set up the integral using each possible most restrictive pair and add the results.

bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.

24. The region in the first octant bounded by the coordinate planes quadrant and the planes x + z = 1, y + 2z = 2

Example 106. Set up an integral for the volume of the region D defined by

Rules for Triple Integrals for the Sketching Impaired (credit to Wm. Douglas Withe (starting us mascanet) $x + y^2 \le 8, \quad y^2$ Rule 1: ctly twice for the next integral. $y \ge 0$ Rule 2: After setting up an integral, cross out any constraints involving the variable just used. Rule 1: pick > which shows up twice Rule 3: Create a new constraint by setting the lower limit of the preceding integral less than the upper limit Rule 4: A square variable counts twice Rule 5: The region of integration of the next step must lie within the domain of any function used in previous limits. Rule 6: If you do not know which is the upper limit and which is the lower, take a guess - but be prepared to backtrack. Rule 2: Cross out The unstants you just used. Rule 7: When forced to use a variable appearing more than twice, choose the most restrictive pair of constraints Rule 8: When unable to determine the most restrictive pair of constraints, set up the integral using each possible most restrictive pair and add the results. Rule 3: Make New Constant bot 5 top R: $y^{2}_{+} Z z^{2} \leq 8 - q^{2} \Rightarrow 2y^{2}_{+} Z z^{2} \leq 8$ $\Rightarrow y^{2}_{+} z^{2} \leq 4$ ye [@2] ZE [-J4-4, 14-4] I dx dz dy XE(42+2=2, 8-y2) V01=

1 Q=T(3

in Qual IP.

TZO (as before)

0 = [0,27] or

 $(x,y,z) \varphi = (Z, \frac{2\pi}{3}, 3) \varphi$

§15.7 Triple Integrals in Cylindrical & Spherical Coordinates

$$r^{2} = x^{2} + y^{2}, \quad \tan(\theta) = \frac{y}{x}, \quad z = z$$

b)Find Cartesian coordinates for the with cylindrical coordinates point $(2, 5\pi/4, 1)$ =(5,0,2)

2=3

$$\chi = z * \cos(\frac{5\pi}{4}) = -52$$

$$y = z * \sin(\frac{5\pi}{4}) = 52$$

$$z = 1.$$

$$(\chi, y, z) = (-52, 52, 1)$$

§15.7
$$dV = dx dy dz$$
 $\overline{V} = \nabla x \nabla y \nabla z$ Page 113

Example 109. In *xyz*-space sketch the *cylindrical box* = $\nabla \nabla \nabla \nabla Z$??

$$B = \{(r, \theta, z) \mid 1 \le r \le 2, \pi/6 \le \theta \le \pi/3, 0 \le z \le 2\}.$$

Triple Integrals in Cylindrical Coordinates

We have $dV = 4 \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3}$

Example 110. Set up a iterated integral in cylindrical coordinates for the volume of the region D lying below z = x+2, above the xy-plane, and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Example 111. You try it! Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.

Example 111. You try it! Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.

 $M = \int_{0}^{1} \int_{0}^{1-r} \int_{0}^{2\pi} Zr \, d\theta \, dz \, dr \, abo \, Fine!$

(The two common lowercase phi symbols:

 ϕ (curly phi) — sometimes called "script phi" or "open phi"

Looks like a curly or loopy "C" with a vertical line

Unicode: U+03D5

Often used in physics and engineering (e.g., magnetic flux)

 ϕ (straight phi) — often just "phi"

Looks like a circle with a vertical line through it

Unicode: U+03C6

Often used in math, philosophy, and logic

gran

Example 113. In *xyz*-space sketch the *spherical box*

$$B = \{(\rho, \varphi, \theta) \mid 1 \le \rho \le 2, \frac{\pi}{4} \le \varphi \le \frac{\pi}{4}, \pi/6 \le \theta \le \pi/3\}$$

Triple Integrals in Spherical Coordinates

We have
$$dV = \int^2 \sin \varphi \, d\varphi \, d\varphi \, d\varphi$$

Example 114. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z = \sqrt{3}\sqrt{x^2+y^2}$.

Triple Integrals in Spherical Coordinates

We have dV = _____

Example 114. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z=\sqrt{3}\sqrt{x^2+y^2}$.

Example 115. You try it! Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

Example 115. You try it! Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

Sphere:

$$\chi^2 + \eta^2 + z^2 = Z \quad (a) \quad p = \sqrt{2}$$

intersection
 $\chi^2 + \eta^2 + z^2 = 2 \quad (a) \quad \chi^2 + \eta^2 = 1$
 $\Rightarrow \quad 1 + z^2 = z$
 $\Rightarrow \quad Z^2 = 1 \quad \Rightarrow \quad Z = \pm 1$
One point in intersection
is $(0, 1, 1)_p = (1, \frac{\pi}{2}, \frac{\pi}{4})_p$

Same idea as last example $2l^2ty^2 = p^2 \sin^2 \psi$ so cylinder is $p^2 \sin^2 \psi = 1$ $\Rightarrow p \sin \psi = 1$ $\Rightarrow p = \csc \psi$ we want outer part outside cylinder à maide sphere so $\Psi \in [\frac{T}{4}, \frac{3TT}{4}]$ $p \in [\csc \psi, 5z]$ and $\Theta \in (0, 2TT)$

$$V_0 = \begin{cases} 2\pi (3\pi)_4 & \sqrt{52} \\ 0 & \sqrt{714} \\ 0$$

§15.8 Change of Variables in Multiple Integrals

Thinking about single variable calculus: Compute
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} dx$$

TECTANGULON
 $JA = dxdy \quad JU = dxdydz$
polar coord.
 $dA = r drd\theta$
Cycindrical
 $dU = r dr d\theta dz$
Sphercul coord.
 $W = p^{2} \sin \theta d\theta dp d\theta$

Theorem 116 (Substitution Theorem). Suppose $\mathbf{T}(u, v)$ is a one-to-one, differentiable transformation that maps the region G in the uv-plane to the region R in the xy-plane. Then

$$\iint_{R} f(x,y) \, dx \, dy = \iint_{G} f(\mathbf{T}(u,v)) \left[\det(\mathbf{DT}(u,v)) \right] \, du \, dv.$$

$$T_{R} \left[\begin{array}{c} \operatorname{Joc} y \operatorname{dv} dy = \int_{G} f(\mathbf{T}(u,v)) \left[\det(\mathbf{DT}(u,v)) \right] \, du \, dv.$$

$$T_{R} \left[\begin{array}{c} \operatorname{Joc} y \operatorname{dv} dy = \int_{V} \frac{1}{2} \int_{V} \frac{1}{2}$$

2. Find G and sketch: $G = [0,1] \times [0,2] \Rightarrow (u,v)$ IF yelo,4) then $x \in \left(\frac{4}{2}, \frac{4}{2}, \frac{1}{2}\right)$

$$\int_{U=1}^{V} \int_{U=1}^{U=2x} \int_{U=1}$$

Example 118. a) You try it! Find the Jacobian of the transformation

$$x = u + (1/2)v, \ y = v.$$

b) You try it! Which transformation(s) seem suitable for the integral

$$\int_{0}^{2} \int_{y/2}^{(y+4)/2} y^{3}(2x-y)e^{(2x-y)^{2}} dx dy?$$

i) $u = x, v = y$ iv) $u = y, v = 2x - y$
ii) $u = \sqrt{x^{2} + y^{2}}, v = \arctan(y/x)$ v) $u = 2x - y, v = y$
iii) $u = 2x - y, v = y^{3}$ vi) $u = e^{(2x-y)^{2}}, v = y^{3}$

Example 118. a) You try it! Find the Jacobian of the transformation

$$x = u + (1/2)v, \quad y = v.$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u + \frac{1}{2}v \\ v \end{bmatrix} = T(u,v)$$
So $DT = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$
and $|DT| = 1$

$$\begin{bmatrix} DT \\ V \end{bmatrix} = 1$$

$$\begin{bmatrix} V \\ V \end{bmatrix}$$
Which transformation(s) score suitable for the integral

b) You try it! Which transformation(s) seem suitable for the integral

$$\int_{0}^{2} \int_{y/2}^{(y+4)/2} y^{3}(2x-y)e^{(2x-y)^{2}} dx dy?$$
i) $u = x, v = y$ does nothing \bigcirc iv) $u = y, v = 2x - y$
ii) $u = \sqrt{x^{2} + y^{2}}, v = \arctan(y/x)$? v) $u = 2x - y, v = y$
iii) $u = 2x - y, v = y^{3}$ vi) $u = e^{(2x-y)^{2}}, v = y^{3}$

Try (iii)
$$\iint_{G} \nabla U \in U^2 * |DT| du dv Seence helpful.Can do W-sub$$

try (iv)
$$\iint_{G} \mathcal{U}^{3} \mathcal{V} \stackrel{e^{v^{2}}}{\underset{can}{do}} \times |DT| du dv$$
 Seems helpful. Might
be enter
try (v)
$$\iint_{G} \mathcal{V}^{3} u \stackrel{u^{2}}{\underset{can}{do}} \times |DT| du dv$$
 have
try (vi)
$$\iint_{G} \mathcal{V}^{3} u \stackrel{u^{2}}{\underset{can}{do}} \times |DT| du dv$$
 have
two ?

Theorem 119 (Derivative of Inverse Coordinate Transformation). If $\mathbf{T}(u, v)$ is a one-to-one differentiable transformation that maps a region G in the uv-plane to a region R in the xy-plane and $T(u_0, v_0) = (x_0, y_0)$, then we have

$$|\det(D\mathbf{T}(u_0, v_0))| = \frac{1}{|\det(D\mathbf{T}^{-1}(x_0, y_0))|}$$

General fact about invertible matrices $det A = \int_{det A^{-1}}^{I} V.$ **Example 120.** Let's evaluate $\iint_R \frac{y(x+y)}{x^3}$ where *R* is the region in the *xy*-plane bounded by y = x, y = 3x, y = 1 - x, and y = 2 - x. Consider the coordinate transformation u = x + y, v = y/x.

1. Find the rectangle G in the uv plane that is mapped to R

top-left boundary top-right boundary bot-left boundary bot-right boundary

2. Evaluate $f(\mathbf{T}(u, v)) |\det(D\mathbf{T}(u, v))|$ in terms of u and v without directly solving for \mathbf{T} using the theorem above

3. Use the Substitution Theorem to compute the integral.