MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today:

- Set classroom norms
- Describe the big-picture goals of the class
- Review \mathbb{R}^3 and the dot product
- Introduce the cross product and its properties

Class Values/Norms:

- Mistakes are a learning opportunity
- Mathematics is collaborative
- Make sure everyone is included
- Criticize ideas, not people
- Be respectful of everyone
- •

Sections 12.1, 12.4, 12.5

Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

Differential Calculus

Integral Calculus

Before: we studied single-variable functions $f : \mathbb{R} \to \mathbb{R}$ like $f(x) = 2x^2 - 6$.

Now: we will study **multi-variable functions** $f : \mathbb{R}^n \to \mathbb{R}^m$: each of these functions is a rule that assigns one output vector with m entries to each input vector with n entries.

§12.1: Three-Dimensional Coordinate Systems

Question: What shape is the set of solutions $(x, y, z) \in \mathbb{R}^3$ to the equation $x^2 + y^2 = 1$?

Page 4

§12.3, 12.4: Dot & Cross Products

Definition 1. The **dot product** of two vectors $\mathbf{u} = \langle u_1, u_2, \ldots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \ldots, v_n \rangle$ is

This product tells us about _____

In particular, two vectors are **orthogonal** if and only if their dot product is _____.

Example 2. Are $\mathbf{u} = \langle 1, 1, 4 \rangle$ and $\mathbf{v} = \langle -3, -1, 1 \rangle$ orthogonal?

 $\ensuremath{\textbf{Goal:}}$ Given two vectors, produce a vector orthogonal to both of them in a "nice" way.

1.

2.

Definition 3. The cross product of two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 is

Example 4. Find $\langle 1, 2, 0 \rangle \times \langle 3, -1, 0 \rangle$.

A Geometric Interpretation of $\mathbf{u}\times\mathbf{v}$

The cross product $\mathbf{u}\times\mathbf{v}$ is the vector

 $\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta)\mathbf{n}$

where \mathbf{n} is a unit vector which is normal to the plane spanned by \mathbf{u} and \mathbf{v} .

Since **n** is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is the area of the parallelogram spanned by **u** and **v**.

 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

Example 5. Find the area of the parallelogram determined by the points P, Q, and R.

P(1,1,1), Q(2,1,3), R(3,-1,1)

§12.5 Lines & Planes

Lines in \mathbb{R}^2 , a new perspective:

Example 6. Find a vector equation for the line that goes through the points P = (1, 0, 2) and Q = (-2, 1, 1).

Planes in \mathbb{R}^3

Conceptually: A plane is determined by either three points in \mathbb{R}^3 or by a single point and a direction **n**, called the *normal vector*.

Algebraically: A plane in \mathbb{R}^3 has a *linear* equation (back to Linear Algebra! imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

Example 7. Consider the planes y - z = -2 and x - y = 0. Show that the planes intersect and find an equation for the line passing through the point P = (-8, 0, 2) which is parallel to the line of intersection of the planes.

§12.6 Quadric Surfaces

Definition 8. A quadric surface in \mathbb{R}^3 is the set of points that solve a quadratic equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to examine their cross-sections.

Example 9. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$.

12.6 Cylinders and Quadric Surfaces 743

TABLE 12.1 Graphs of Quadric Surfaces

§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other onedimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is

C is called ______ the curve C, and \mathbf{r} is called a ______ of

Example 10. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?

§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with <u>limits</u>:

Example 11. Compute $\lim_{t\to e} \langle t^2, 2, \ln(t) \rangle$.

And with continuity:

Example 12. Determine where the function $\mathbf{r}(t) = t\mathbf{i} - \frac{1}{t^2 - 4}\mathbf{j} + \sin(t)\mathbf{k}$ is continuous.

And with <u>derivatives</u>:

Example 13. If $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$, find $\mathbf{r}'(t)$.

Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t, then

- $\mathbf{r}'(t)$ gives _____
- $|\mathbf{r}'(t)|$ gives _____
- $\mathbf{r}''(t)$ gives _____

Let's see this graphically

Example 14. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.

And with integrals:

Example 15. Find $\int_0^1 \langle t, e^{2t}, \sec^2(t) \rangle dt$.

At this point we can solve initial-value problems like those we did in single-variable calculus:

Example 16. Wallace is testing a rocket to fly to the moon, but he forgot to include instruments to record his position during the flight. He knows that his velocity during the flight was given by

$$\mathbf{v}(t) = \langle -200\sin(2t), 200\cos(t), 400 - \frac{400}{1+t} \rangle \ m/s.$$

If he also knows that he started at the point $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, use calculus to reconstruct his flight path.

§13.3 Arc length of curves

We have discussed motion in space using by equations like $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

Our next goal is to be able to measure <u>distance traveled</u> or arc length.

Motivating problem: Suppose the position of a fly at time t is

$$\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle,$$

where $0 \le t \le 2\pi$.

a) Sketch the graph of $\mathbf{r}(t)$. What shape is this?

b) How far does the fly travel between t = 0 and $t = \pi$?

c) What is the speed $\|\mathbf{v}(t)\|$ of the fly at time t?

d)Compute the integral $\int_0^{\pi} \|\mathbf{v}(t)\| dt$. What do you notice?

Definition 17. We say that the **arc length** of a smooth curve

 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ from ______ to _____ that is traced out exactly once is

Example 18. Set up an integral for the arc length of the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ from the point (1, 1, 1) to the point (2, 4, 8).

Example 19. You try it! Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = \langle 6\sin(2t), 6\cos(2t), 5t \rangle, \ 0 \le t \le 2\pi$.

Example 20. You try it! Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{k}, \ 0 \le t \le 8.$

Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t_0 to an arbitrary time t, which is given by the **arc length function**.

$$s(t) =$$

We can use this function to produce parameterizations of curves where the parameter s measures distance along the curve: the points where s = 0 and s = 1 would be exactly 1 unit of distance apart.

Example 21. Find an arc length parameterization of the circle of radius 4 about the origin in \mathbb{R}^2 , $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t) \rangle, 0 \le t \le 2\pi$.

Example 22. You try it! Find (a) an arc length parameterization s(t) of the curve C, the portion of the helix of radius 4 in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle, 0 \le t \le \pi/2$, and (b) use s(t) to find L the length of C

§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the <u>curvature</u> of a curve in space along with two vectors that orient the curve.

First, we need the **unit tangent vector**, denoted \mathbf{T} :

• In terms of an arc-length parameter s: _____

• In terms of any parameter t: _____

This lets us define the **curvature**, $\kappa(s) =$ ______

Example 23. In Example 21 we found an arc length parameterization of the circle of radius 4 centered at (0, 0) in \mathbb{R}^2 :

$$\mathbf{r}(s) = \left\langle 4\cos\left(\frac{s}{4}\right), 4\sin\left(\frac{s}{4}\right) \right\rangle, \qquad 0 \le s \le 8\pi.$$

Use this to find $\mathbf{T}(s)$ and $\kappa(s)$.

Question: In which direction is \mathbf{T} changing?

This is the direction of the **principal unit normal**, N(s) =

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization $\mathbf{r}(t)$?

Example 25. You try it! Find $\mathbf{T}, \mathbf{N}, \kappa$ for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}, \ t \in \mathbb{R}.$$

§14.1 Functions of Multiple Variables

Definition 26. A ______ is a rule that as-

signs to each ______ of real numbers (x, y) in a set D a ______ denoted by f(x, y).

 $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^2$

Example 27. Three examples are

$$f(x,y) = x^2 + y^2$$
, $g(x,y) = \ln(x+y)$, $h(x,y) = \frac{1}{\sqrt{x+y}}$

Example 28. Find the largest possible domains of f, g, and h.

Definition 29. If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Here are the graphs of the three functions above.

Example 30. Suppose a small hill has height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ m at each point (x, y). How could we draw a picture that represents the hill in 2D?

Definition 31. The ______ (also called ______) of a function f of two variables are the curves with equations ______, where k is a constant (in the range of f). A plot of ______ for various values of z is a ______(or ______).

Some common examples of these are:

- •

- •

Example 32. Create a contour diagram of $f(x, y) = x^2 - y^2$

Definition 33. The ______ of a surface are the curves of ______ of the surface with planes parallel to the

Example 34. Use the traces and contours of $z = f(x, y) = 4 - 2x - y^2$ to sketch the portion of its graph in the first octant.

Definition 35. A ______ is a rule that assigns to each ______ of real numbers (x, y, z) in a set D a ______ denoted by f(x, y, z).

 $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^3$

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 36. Describe the largest possible domain of the function

$$f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}.$$

Example 37. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.

§14.2 Limits & Continuity

Definition 38. What is a limit of a function of two variables?

DEFINITION We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (*x*, *y*) in the domain of *f*,

 $|f(x, y) - L| < \epsilon$ whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

We won't use this definition much: the big idea is that $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ if and only if f(x,y) ______ regardless of how we approach the point (x_0, y_0) .

Definition 39. A function f(x, y) is continuous at (x_0, y_0) if

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function.

Example 40. Evaluate $\lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4}$, if it exists.

Example 41. You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)}\frac{\cos y+1}{y-\sin x}$, if it exists.
Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before.

Big Idea: Limits can behave differently along different paths of approach

Example 42. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$, if it exists. Here is its graph.

This idea is called the **two-path test:**

If	we	can	find				to	(x_0,y_0)	along
whi	.ch			 takes	on	two	different	values,	then

Example 43. Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$$

does not exist.

Example 44. You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ is DNE by using the

two-path test.

Example 45. [Challenge:] Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4 + y^2}$$

does exist using the Squeeze Theorem.

Theorem 46 (Squeeze Theorem). If f(x,y) = g(x,y)h(x,y), where $\lim_{(x,y)\to(a,b)} g(x,y) = 0$ and $|h(x,y)| \leq C$ for some constant C near (a,b), then $\lim_{(x,y)\to(a,b)} f(x,y) = 0$.

§14.3: Partial Derivatives

Goal: Describe how a function of two (or three, later) variables is changing at a point (a, b).

Example 47. Let's go back to our example of the small hill that has height

$$h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

meters at each point (x, y). If we are standing on the hill at the point with (2, 1, 11/4), and walk due north (the positive *y*-direction), at what rate will our height change? What if we walk due east (the positive *x*-direction)?

Definition 48. If f is a function of two variables x and y, its _

are the functions f_x and f_y defined by

Notations:

Interpretations:

Example 49. Find $f_x(1,2)$ and $f_y(1,2)$ of the functions below.

a) $f(x, y) = \sqrt{5x - y}$

 $\mathbf{b})f(x,y) = \tan(xy)$

Question: How would you define the second partial derivatives?

Example 50. Find f_{xx} , f_{xy} , f_{yx} , and f_{yy} of the function below.

 $f(x,y) = \sqrt{5x - y}$

What do you notice about f_{xy} and f_{yx} in the previous example?

Theorem 51 (Clairaut's Theorem). Suppose f is defined on a disk D that contains the point (a, b). If the functions $f, f_x, f_y, f_{xy}, f_{yx}$ are all continuous on D, then

Example 52. You try it! What about functions of three variables? How many partial derivatives should $f(x, y, z) = 2xyz - z^2y$ have? Compute them.

Example 53. How many rates of change should the function $f(s,t) = \begin{bmatrix} s^2 + t \\ 2s - t \\ st \end{bmatrix}$ have? Compute them.

So, we computed partial derivatives. How might we **organize** this information?

For any function $f : \mathbb{R}^n \to \mathbb{R}^m$ having the form $f(x_1, \dots, x_n) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{bmatrix}$,

we have _____ inputs, _____ output, and _____ partial derivatives, which we can use to form the **total derivative**.

This is a _____ map from $\mathbb{R}^n \to \mathbb{R}^m$, denoted Df, and we can represent it with an _____, with one column per input and one row per output.

It has the formula $Df_{ij} =$

Example 54. You try it! Find the total derivatives of each function:

a) $f(x) = x^2 + 1$

b)
$$\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$$

c)
$$f(x, y) = \sqrt{5x - y}$$

$$\mathbf{d})f(x,y,z) = 2xyz - z^2y$$

e)
$$\mathbf{f}(s,t) = \langle s^2 + t, 2s - t, st \rangle$$

What does it mean? In differential calculus, you learned that one interpretation of the derivative is as a slope. Another interpretation is that the derivative measures how a function transforms a neighborhood around a given point.

Check it out for yourself. (credit to samuel.gagnon.nepton, who was inspired by 3Blue1Brown.)

In particular, the (total) derivative of **any** function $f : \mathbb{R}^n \to \mathbb{R}^m$, evaluated at $\mathbf{a} = (a_1, \ldots, a_n)$, is the linear function that best approximates $f(\mathbf{x}) - f(\mathbf{a})$ at \mathbf{a} .

This leads to the familiar linear approximation formula for functions of one variable: $L(x) = f(a) + f'(a)(x - a) \approx f(x)$, near x = a.

Definition 55. The linearization or linear approximation of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$ at the point $\mathbf{a} = (a_1, \ldots, a_n)$ is

$$L(\mathbf{x}) =$$

Example 56. Find the linearization of the function $f(x, y) = \sqrt{5x - y}$ at the point (1, 1). Use it to approximate f(1.1, 1.1).

Question: What do you notice about the equation of the linearization?

We say $f : \mathbb{R}^n \to \mathbb{R}$ is **differentiable** at **a** if its linearization is a good approximation of f near **a**.

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-L(x,y)}{\|(x,y)-(a,b)\|}=0.$$

In particular, if f is a function f(x, y) of two variables, it is differentiable at (a, b) its graph has a unique tangent plane at (a, b, f(a, b)).

Example 57. Determine if $f(x, y) = \begin{cases} 1 & xy = 0 \\ 0 & xy \neq 0 \end{cases}$ is differentiable at (0, 0).

Page 50

§14.4 The Chain Rule

Recall the Chain Rule from single variable calculus:

Similarly, the **Chain Rule** for functions of multiple variables says that if $f : \mathbb{R}^p \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are both differentiable functions then

$$D(f(g(\mathbf{x}))) = Df(g(\mathbf{x}))Dg(\mathbf{x}).$$

Example 58. Suppose we are walking on our hill with height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ along the curve $\mathbf{r}(t) = \langle t+1, 2-t^2 \rangle$ in the plane. How fast is our height changing at time t = 1 if the positions are measured in meters and time is measured in minutes? **Example 59.** Suppose that W(s,t) = F(u(s,t), v(s,t)), where F, u, v are differentiable functions and we know the following information.

u(1,0) = 2	v(1,0) = 3
$u_s(1,0) = -2$	$v_s(1,0) = 5$
$u_t(1,0) = 6$	$v_t(1,0) = 4$
$F_u(2,3) = -1$	$F_v(2,3) = 10$

Find $W_s(1, 0)$ and $W_t(1, 0)$.

Application to Implicit Differentiation: If F(x, y, z) = c is used to *implicitly* define z as a function of x and y, then the chain rule says:

Example 60. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the sphere $x^2 + y^2 + z^2 = 4$.

§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then f_x represents the rate of change of z in the x-direction and f_y represents the rate of change of z in the y-direction. What about other directions?

Let's go back to our hill example again, $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$. How could we figure out the rate of change of our height from the point (2, 1) if we move in the direction $\langle -1, 1 \rangle$?

Definition 62. The ______ of $f : \mathbb{R}^n \to \mathbb{R}$ at the point **p**

in the direction of a unit vector ${\bf u}$ is

$$D_{\mathbf{u}}f(\mathbf{p}) =$$

if this limit exists.

E.g. for our hill example above we have:

Note that $D_{\mathbf{i}}f = D_{\mathbf{j}}f = D_{\mathbf{k}}f =$

Definition 63. If $f : \mathbb{R}^n \to \mathbb{R}$, then the ______ of f at $\mathbf{p} \in \mathbb{R}^n$ is the vector function _____ (or _____) defined by

$$\nabla f(\mathbf{p}) =$$

Note: If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point **p**, then f has a directional derivative at **p** in the direction of any unit vector **u** and

$$D_{\mathbf{u}}f(\mathbf{p}) =$$

Example 64. *You try it!* Find the gradient vector and the directional derivative of each function at the given point **p** in the direction of the given vector **u**.

a)
$$f(x,y) = \ln(x^2 + y^2), \mathbf{p} = (-1,1), \mathbf{u} = \left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$$

b) $g(x, y, z) = x^2 + 4xy^2 + z^2$, $\mathbf{p} = (1, 2, 1)$, \mathbf{u} the unit vector in the direction of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

Example 65. If $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, the contour map is given below. Find and draw ∇h on the diagram at the points (2, 0), (0, 4), and $(-\sqrt{2}, -\sqrt{2})$. At the point (2, 0), compute $D_{\mathbf{u}}h$ for the vectors $\mathbf{u}_1 = \mathbf{i}, \mathbf{u}_2 = \mathbf{j}, \mathbf{u}_3 = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$.

Note that the gradient vector ∇f is ______ to the level curves of the function _____.

Similarly, for f(x, y, z), $\nabla f(a, b, c)$ is _____

Example 66. You try it! Sketch the curve $x^2 + y^2 = 4$ together with (a) the vector $\nabla f \mid_P$ and (b) the tangent line at $P(\sqrt{2}, \sqrt{2})$. Be sure to label the tangent line with the equation which defines it.

-

① Share

ChatGPT ~

The LaTeX symbol \nabla renders as:

 ∇

It is called **"nabla"** or the **del operator**, and it is used primarily in vector calculus. It represents the vector differential operator:

$$abla = \left[rac{\partial}{\partial x_1}, rac{\partial}{\partial x_2}, \dots, rac{\partial}{\partial x_n}
ight]$$

Common Uses:

• **Gradient** of a scalar function *f*:

$$abla f = \left[rac{\partial f}{\partial x_1}, rac{\partial f}{\partial x_2}, \ldots
ight]$$

• **Divergence** of a vector field \vec{F} :

$$abla \cdot ec{F}$$

• **Curl** of a vector field \vec{F} :

• Laplacian of a scalar field *f*:

$$abla^2 f =
abla \cdot
abla f$$

So in summary, \nabla is a compact and powerful symbol in multivariable calculus, especially when working with fields and differential operators.

00770°

+	⋧ Tools	Ŷ	••••
	ChatGPT can make mistakes. Check important info. See Cookie Preferences.		-

§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k. How can we find an equation of the tangent plane of S at $P(x_0, y_0, z_0)$?

Example 67. Find the equation of the tangent plane at the point (-2, 1, -1) to the surface given by

$$z = 4 - x^2 - y$$

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the tangent plane is

This should look familiar: it's _____

Example 68. You try it! Consider the surface in \mathbb{R}^3 containing the point P and defined by

$$x^{2} + 2xy - y^{2} + z^{2} = 7, P(1, -1, 3).$$

Identity the function F(x, y, z) such that the surface is a level set of F. Then, find ∇F and an equation for the plane tangent to the surface at P. Finally, find a parametric equation for the line normal to the surface at P.

§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said $\nabla f(a, b)$ points in the direction of greatest change of f.

Back to the hill $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$.

What should we expect to get if we compute $\nabla h(0,0)$? Why? What does the tangent plane to z = h(x,y) at (0,0,4) look like?

Definition 69. Let f(x, y) be defined on a region containing the point (a, b). We say

- f(a,b) is a ______ value of f if f(a,b) _____ f(x,y) for all domain points (x,y) in a disk centered at (a,b)
- f(a,b) is a ______ value of f if f(a,b) _____ f(x,y) for all domain points (x,y) in a disk centered at (a,b)

In \mathbb{R}^3 , another interesting thing can happen. Let's look at $z = x^2 - y^2$ (a hyperbolic paraboloid!) near (0,0).

This is called a _____

Notice that in all of these examples, we have a horizontal tangent plane at the point in question, i.e.

Definition 70. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a,b) = ______ or where Df(a,b) ______

is called a _____ of f.

Example 71. Find the critical points of the function

$$f(x,y) = x^3 + y^3 - 3xy.$$

Example 72. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x, y) = 3x + y^3 + 2y^2$$

$$b)g(x,y) = \cos(x) + \sin(x)$$

c)
$$h(x, y) = \frac{4}{x^2 + y^2}$$

d)
$$k(x,y) = x^2 + y^2$$

To classify critical points, we turn to the **second derivative test** and the **Hessian matrix**. The **Hessian matrix** of f(x, y) at (a, b) is

$$Hf(a,b) =$$

Theorem 73 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and f has continuous second partial derivatives. Then we have:

- If det(Hf(a, b)) > 0 and $f_{xx}(a, b) > 0$, f(a, b) is a local minimum
- If det(Hf(a, b)) > 0 and $f_{xx}(a, b) < 0$, f(a, b) is a local maximum
- If det(Hf(a, b)) < 0, f has a saddle point at (a, b)
- If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at \mathbf{p} then

- If all eigenvalues of Hf(p) are positive, f is concave up in every direction from p and so has a local minimum at p.
- If all eigenvalues of $Hf(\mathbf{p})$ are negative, f is concave down in every direction from \mathbf{p} and so has a local maximum at \mathbf{p} .
- If some eigenvalues of $Hf(\mathbf{p})$ are positive and some are negative, f is concave up in some directions from \mathbf{p} and concave down in others, so has neither a local minimum or maximum at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are positive or zero, f may have either a local minimum or neither at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are negative or zero, f may have either a local maximum or neither at \mathbf{p} .

Example 74. Classify the critical points of $f(x, y) = x^3 + y^3 - 3xy$ from Example 71.

Two Local Maxima, No Local Minimum: The function $g(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2 + 2$ has two critical points, at (-1, 0) and (1, 2). Both are local maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have $f(a, b) \ge f(x, y)$ for all (x, y) in the domain of f. A global minimum is defined similarly.

Theorem 75. On a closed \mathcal{E} bounded domain, any continuous function f(x, y) attains a global minimum \mathcal{E} maximum.

Closed:

Bounded:

Strategy for finding global min/max of f(x,y) on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 76. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4. **Example 76.** Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4. (*Cont.*)

§14.8 Constrained Optimization, Lagrange Multipliers

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a *constraint*, g(x, y) = c.

Example 77. A new hiking trail has been constructed on the hill with height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, above the points $y = -0.5x^2 + 3$ in the *xy*-plane. What is the highest point on the hill on this path?

Objective function:

Constraint equation:
Example 77. A new hiking trail has been constructed on the hill with height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, above the points $y = -0.5x^2 + 3$ in the *xy*-plane. What is the highest point on the hill on this path?

(Cont.)

Method of Lagrange Multipliers: To find the maximum and minimum values attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points where $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and g(x, y, z) = c and compute the value of f at these points.

If we have more than one constraint $g(x, y, z) = c_1$, $h(x, y, z) = c_2$, then find all points where $\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$ and $g(x, y, z) = c_1$, $h(x, y, z) = c_2$.

Example 78. Find the points on the surface $z^2 = xy + 4$ that are closest to the origin.

Example 78. Find the points on the surface $z^2 = xy + 4$ that are closest to the origin.

(Cont.)

§15.1 Double Integrals, Iterated Integrals, Change of Order

Recall: Riemann sum and the definite integral from single-variable calculus.

Double Integrals

Volumes and Double integrals Let R be the closed rectangle defined below:

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

Let f(x, y) be a function defined on R such that $f(x, y) \ge 0$. Let S be the solid that lies above R and under the graph f.

Question: How can we estimate the volume of S?

Definition 79. The ______ of f(x, y) over a rectangle R is

$$\iint_R f(x,y) \ dA = \lim_{|P| \to 0} \sum_{k=1}^n f(x_k, y_k) \Delta A_k$$

if this limit exists.

Question: How can we compute a double integral?

Answer:

Let f(x, y) = 2xy and lets integrate over the rectangle $R = [1, 3] \times [0, 4]$.

We want to compute $\int_1^3 \int_0^4 f(x, y) \, dy \, dx$, but lets consider the slice at x = 2.

What does $\int_0^4 f(2, y) \, dy$ represent here?

In general, if f(x, y) is integrable over $R = [a, b] \times [c, d]$, then $\int_c^d f(2, y) \, dy$ represents:

What about $\int_{c}^{d} f(x, y) dy$?

Let $A(x) = \int_{c}^{d} f(x, y) dy$. Then,

$$= \int_{a}^{b} A(x) dx =$$

This is called an _____.

Example 80. Evaluate $\int_1^2 \int_3^4 6x^2y \, dy \, dx$.

Theorem 81 (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 82. You try it! Integrate:

a)
$$\int_{0}^{2} \int_{-1}^{1} x - y \, dy \, dx$$
 easy

b)
$$\int_0^1 \int_0^1 \frac{y}{1+xy} \, dx \, dy$$
 medium

c)
$$\int_{1}^{4} \int_{1}^{e} \frac{\ln x}{xy} dx dy$$
 HARD!

Example 83. Compute $\iint_R x e^{e^{e^y}} dA$, where R is the rectangle $[-1, 1] \times [0, 4]$.

Hint: Fubini's Theorem.

§15.2 Double Integrals on General Regions

Question: What if the region R we wish to integrate over is not a rectangle?

Answer: Repeat same procedure - it will work if the boundary of R is smooth and f is continuous.

Example 84. Compute the volume of the solid whose base is the triangle with vertices (0,0), (0,1), (1,0) in the *xy*-plane and whose top is z = 2 - x - y.

Vertically simple:

Horizontally simple:

Example 85. Write the two iterated integrals for $\iint_R 1 \, dA$ for the region R which is bounded by $y = \sqrt{x}, y = 0$, and x = 9.

Example 86. Set up an iterated integral to evaluate the double integral $\iint_R 6x^2y \ dA$, where R is the region bounded by x = 0, x = 1, y = 2, and y = x.

Example 87. You try it! Write the two iterated integrals for $\iint_R 1 \, dA$ for the region R which is bounded by x = 0, y = 8, and $y = x^3$.

Example 88. Sketch the region of integration for the integral

$$\int_0^1 \int_{4x}^4 f(x,y) \, dy \, dx.$$

Then write an equivalent iterated integral in the order dx dy.

§15.3 Area & Average Value

Two other applications of double integrals are computing the area of a region in the plane and finding the average value of a function over some domain.

Area: If R is a region bounded by smooth curves, then

 $\operatorname{Area}(R) = _$

Example 89. Find the area of the region R bounded by $y = \sqrt{x}$, y = 0, and x = 9.

Average Value: The average value of f(x, y) on a region R contained in \mathbb{R}^2 is

 $f_{avg} =$ _____

Example 90. Find the average temperature on the region R in the previous example if the temperature at each point is given by $T(x, y) = 4xy^2$.

Example 91. You try it! Find the average value of the function $f(x, y) = x^2 + y^2$ on the region $R = [0, 2] \times [0, 2]$.

Example 92. Find the average value of the function $f(x, y) = \sin(x+y)$ on (a) the region $R_1 = [0, \pi] \times [0, \pi]$, and (b) the region $R_2 = [0, \pi] \times [0, \pi/2]$. *Hint: choose your order of integration carefully!* **Example 93.** You try it! Which value is larger for the function f(x, y) = xy: the average value of f over the square $R_1 = [0, 1] \times [0, 1]$, or the average value of f over R_2 the quarter circle $x^2 + y^2 \leq 1$ in Quadrant I? Verify your guess with calculations.

§15.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates

We can use trigonometry to go back and forth.

Polar to Cartesian:

 $x = r\cos(\theta)$ $y = r\sin(\theta)$

Cartesian to Polar:

$$r^2 = x^2 + y^2 \qquad \tan(\theta) = \frac{y}{x}$$

Example 94. a) Find a set of polar coordinates for the point (x, y) = (1, 1).

b)Graph the set of points (x, y) that satisfy the equation r = 2 and the set of points that satisfy the equation $\theta = \pi/4$ in the *xy*-plane.

c) Write the function $f(x, y) = \sqrt{x^2 + y^2}$ in polar coordinates.

d) You try it! Write a Cartesian equation describing the points that satisfy $r = 2\sin(\theta)$.

Goal: Given a region R in the xy-plane described in polar coordinates and a function $f(r, \theta)$ on R, compute $\iint_R f(r, \theta) dA$.

Example 95. Compute the area of the disk of radius 5 centered at (0,0).

Remember: In polar coordinates, the area form dA =_____

Goal: Given a region R in the xy-plane described in polar coordinates and a function $f(r, \theta)$ on R, compute $\iint_R f(r, \theta) dA$.

Example 96. Compute the area of the disk of radius 5 centered at (0, 0). *Cont.*

Example 97. Compute $\iint_D e^{-(x^2+y^2)} dA$ on the washer-shaped region $1 \le x^2 + y^2 \le 4$.

Example 98. Compute the area of the smaller region bounded by the circle $x^2 + (y-1)^2 = 1$ and the line y = x.

Example 99. You try it! Write an integral for the volume under z = x on the region between the cardioid $r = 1 + \cos(\theta)$ and the circle r = 1, where $x \ge 0$.

Example 100. Convert the integral in polar coordinates to an equivalent integral in cartesian coordinates, but do not evaluate. Then, evaluate the original integral to find the value of $\iint_R f(x, y) \, dA$.

$$\int_{\pi/6}^{\pi/2} \int_{1}^{\csc\theta} r^2 \cos\theta \ dr \ d\theta$$

Tips and tricks

For horizontal lines such as x = 2:

For vertical lines such as y = 1 (e.g., Example 100):

For off-set circles such as $x^2 + (y - 1)^2 = 1$ (e.g., Example 98):

Example 101. You try it! Find the area of the region R which is the smaller part bounded between the circle $x^2 + y^2 = 4$ and the line x = 1.

§15.5-15.6 Triple Integrals & Applications

Idea: Suppose D is a solid region in \mathbb{R}^3 . If f(x, y, z) is a function on D, e.g. mass density, electric charge density, temperature, etc., we can approximate the total value of f on D with a Riemann sum.

$$\sum_{k=1}^{n} f(x_k, y_k, z_k) \Delta V_k,$$

by breaking D into small rectangular prisms ΔV_k .

Taking the limit gives a

 $=: \iiint_D f(x, y, z) \ dV$

Important special case:

$$\iiint_D 1 \ dV = _$$

Again, we have Fubini's theorem to evaluate these triple integrals as iterated integrals.

Other important spatial applications:

TABLE 15.1 Mass and first moment formulasTHREE-DIMENSIONAL SOLIDMass:
$$M = \iiint_D \delta \, dV$$
 $\delta = \delta(x, y, z)$ is the density at (x, y, z) .First moments about the coordinate planes: $M_{yz} = \iiint_D x \, \delta \, dV$, $M_{xz} = \iiint_D y \, \delta \, dV$, $M_{xy} = \iiint_D z \, \delta \, dV$ Center of mass: $\overline{x} = \frac{M_{yz}}{M}$, $\overline{y} = \frac{M_{xz}}{M}$, $\overline{z} = \frac{M_{xy}}{M}$ TWO-DIMENSIONAL PLATEMass: $M = \iint_R \delta \, dA$ $\delta = \delta(x, y)$ is the density at (x, y) .First moments: $M_y = \iint_R x \, \delta \, dA$, $M_x = \iint_R y \, \delta \, dA$ Center of mass:

Example 102. 1. How to do the computation:

Compute
$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx.$$

2. What does it mean: What shape is this the volume of?

3. How to reorder the differentials: Write an equivalent iterated integral in the order dy dz dx.

Example 103. You try it! Evaluate the triple integrals. What is the shape of the region of integration D in each case?

(a)
$$\int_{1}^{e} \int_{1}^{e^2} \int_{1}^{e^3} \frac{1}{xyz} \, dx \, dy \, dz$$

(b)
$$\int_0^{\pi/3} \int_0^1 \int_{-2}^3 y \sin z \, dx \, dy \, dz$$

X

We will think about converting triple integrals to iterated integrals in terms of the ______ of *D* on one of the coordinate planes.

Case 1: *z*-simple) region. If *R* is the projection of *D* on the *xy*-plane and *D* is bounded above and below by the surfaces z = h(x, y) and z = g(x, y), then

$$\iiint_{D} f(x, y, z) \ dV = \iint_{R} \left(\int_{g(x, y)}^{h(x, y)} f(x, y, z) \ dz \right) \ dy \ dx$$

Case 2: *y*-simple) region. If *R* is the projection of *D* on the *xz*-plane and *D* is bounded right and left by the surfaces y = h(x, z) and y = g(x, z), then

Case 3: *x*-simple) region. If *R* is the projection of *D* on the *yz*-plane and *D* is bounded front and back by the surfaces x = h(y, z) and x = g(y, z), then

$$\iiint_{D} f(x, y, z) \ dV = \iint_{R} \left(\int_{g(y, z)}^{h(y, z)} f(x, y, z) \ dx \right) \ dz \ dy$$

Example 104. Write an integral for the mass of the solid D in the first octant with $2y \le z \le 3 - x^2 - y^2$ with density $\delta(x, y, z) = x^2y + 0.1$ by treating the solid as a) *z*-simple and b) *x*-simple. Is the solid also *y*-simple?

Example 104 (cont.)

Rules for Triple Integrals for the Sketching Impaired (credit to Wm. Douglas Withers)

- Rule 1: Choose a variable appearing exactly twice for the next integral.
- Rule 2: After setting up an integral, cross out any constraints involving the variable just used.
- **Rule 3:** Create a new constraint by setting the lower limit of the preceding integral less than the upper limit.
- Rule 4: A square variable counts twice.
- Rule 5: The region of integration of the next step must lie within the domain of any function used in previous limits.
- Rule 6: If you do not know which is the upper limit and which is the lower, take a guess but be prepared to backtrack.
- **Rule 7:** When forced to use a variable appearing more than twice, choose the most restrictive pair of constraints.
- **Rule 8:** When unable to determine the most restrictive pair of constraints, set up the integral using each possible most restrictive pair and add the results.

Example 105. You try it! Find the volume of the region in the first quadrant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.
Example 105. You try it! Find the volume of the region in the first quadrant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.

Example 106. Set up an integral for the volume of the region D defined by

$$x + y^2 \le 8$$
, $y^2 + 2z^2 \le x$, $y \ge 0$

 x^3y over the region D bounded by

$$x^{2} + y^{2} = 1$$
, $z = 0$, $x + y + z = 2$.

§15.7 Triple Integrals in Cylindrical & Spherical Coordinates

Cylindrical Coordinate System

Conventions:

Example 108. a) Find cylindrical coordinates for the point with Cartesian coordinates $(-1, \sqrt{3}, 3)$.

Cylindrical to Cartesian:

 $x = r\cos(\theta), \quad y = r\sin(\theta), \quad z = z$

Cartesian to Cylindrical:

$$r^{2} = x^{2} + y^{2}, \quad \tan(\theta) = \frac{y}{x}, \quad z = z$$

b) Find Cartesian coordinates for the point with cylindrical coordinates $(2, 5\pi/4, 1)$.

Example 109. In xyz-space sketch the cylindrical box

$$B = \{ (r, \theta, z) \mid 1 \le r \le 2, \ \pi/6 \le \theta \le \pi/3, \ 0 \le z \le 2 \}.$$

Triple Integrals in Cylindrical Coordinates

We have dV = _____

Example 110. Set up a iterated integral in cylindrical coordinates for the volume of the region D lying below z = x+2, above the xy-plane, and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Example 111. You try it! Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.

Spherical Coordinate System

Conventions:

Example 112. a) Find spherical coordinates for the point with Cartesian coordinates $(-2, 2, \sqrt{8})$.

Spherical to Cartesian:

$$x = \rho \sin(\varphi) \cos(\theta)$$
$$y = \rho \sin(\varphi) \sin(\theta)$$
$$z = \rho \cos(\varphi)$$

Cartesian to Spherical:

$$\rho^2 = x^2 + y^2 + z^2$$
$$\tan(\theta) = \frac{y}{x}$$
$$\tan(\varphi) = \frac{\sqrt{x^2 + y^2}}{z}$$

b) Find Cartesian coordinates for the point with spherical coordinates $(2, \pi/2, \pi/3)$.

Example 113. In xyz-space sketch the *spherical box*

$$B = \{(\rho, \varphi, \theta) \mid 1 \le \rho \le 2, \ 0 \le \varphi \le \pi/4, \ \pi/6 \le \theta \le \pi/3\}.$$

Triple Integrals in Spherical Coordinates

We have dV =_____

Example 114. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z=\sqrt{3}\sqrt{x^2+y^2}$.

Example 115. You try it! Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

§15.8 Change of Variables in Multiple Integrals

Thinking about single variable calculus: Compute $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$

Theorem 116 (Substitution Theorem). Suppose $\mathbf{T}(u, v)$ is a one-to-one, differentiable transformation that maps the region G in the uv-plane to the region R in the xy-plane. Then

$$\iint_R f(x,y) \, dx \, dy = \iint_G f(\mathbf{T}(u,v)) |\det(D\mathbf{T}(u,v))| \, du \, dv.$$

Example 117. Evaluate $\int_0^4 \int_{y/2}^{y/2+1} \frac{2x-y}{2} \, dx \, dy$ via the transformation x = u+v,

y = 2v.

1. **Find T:**

2. Find G and sketch:

3. Find Jacobian:

4. Convert and use theorem:

Example 118. a) You try it! Find the Jacobian of the transformation

$$x = u + (1/2)v, \ y = v.$$

b) You try it! Which transformation(s) seem suitable for the integral

$$\int_{0}^{2} \int_{y/2}^{(y+4)/2} y^{3}(2x-y)e^{(2x-y)^{2}} dx dy?$$

i) $u = x, v = y$ iv) $u = y, v = 2x - y$
ii) $u = \sqrt{x^{2} + y^{2}}, v = \arctan(y/x)$ v) $u = 2x - y, v = y$
iii) $u = 2x - y, v = y^{3}$ vi) $u = e^{(2x-y)^{2}}, v = y^{3}$

Theorem 119 (Derivative of Inverse Coordinate Transformation). If $\mathbf{T}(u, v)$ is a one-to-one differentiable transformation that maps a region G in the uv-plane to a region R in the xy-plane and $T(u_0, v_0) = (x_0, y_0)$, then we have

$$|\det(D\mathbf{T}(u_0, v_0))| = \frac{1}{|\det(D\mathbf{T}^{-1}(x_0, y_0))|}$$

Example 120. Let's evaluate $\iint_R \frac{y(x+y)}{x^3}$ where *R* is the region in the *xy*-plane bounded by y = x, y = 3x, y = 1 - x, and y = 2 - x. Consider the coordinate transformation u = x + y, v = y/x.

1. Find the rectangle G in the uv plane that is mapped to R

2. Evaluate $f(\mathbf{T}(u, v)) |\det(D\mathbf{T}(u, v))|$ in terms of u and v without directly solving for \mathbf{T} using the theorem above

3. Use the Substitution Theorem to compute the integral.

§16.1 Line Integrals of Scalar Functions

Chapter 16: Vector Calculus

Goals:

- Extend ______ integrals to ______ objects living in higherdimensional space
- Extend the _____ in new ways

We will use tools from everything we have covered so far to do this: parameterizations, derivatives and gradients, and multiple integrals. **Example 121.** Suppose we build a wall whose base is the straight line from (0,0) to (1,1) in the *xy*-plane and whose height at each point is given by $h(x,y) = 2x + y^2$ meters. What is the area of this wall?

Definition 122. The **line integral** of a scalar function f(x, y) over a curve C in \mathbb{R}^2 is

$$\int_C f(x,y) \ ds =$$

What things can we compute with this?

- If f = 1:
- If $f = \delta$ is a density function:
- If f is a height:

Strategy for computing line integrals:

- 1. Parameterize the curve C with some $\mathbf{r}(t)$ for $a \leq t \leq b$
- 2. Compute $ds = \|\mathbf{r}'(t)\| dt$
- 3. Substitute: $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt$
- 4. Integrate

Example 123. You try it! Compute $\int_C 2x + y^2 ds$ along the curve C given by $\mathbf{r}(t) = 10t\mathbf{i} + 10t\mathbf{j}$ for $0 \le t \le \frac{1}{10}$.

Example 124. Compute $\int_C 2x + y^2 ds$ along the curve C pictured below.

Example 125. You try it! Let C be a curve parameterized by $\mathbf{r}(t)$ from $a \le t \le b$. Select all of the true statements below.

a) $\mathbf{r}(t+4)$ for $a \le t \le b$ is also a parameterization of C with the same orientation

b) $\mathbf{r}(2t)$ for $a/2 \le t \le b/2$ is also a parameterization of C with the same orientation

c) $\mathbf{r}(-t)$ for $a \leq t \leq b$ is also a parameterization of C with the opposite orientation

d) $\mathbf{r}(-t)$ for $-b \leq t \leq -a$ is also a parameterization of C with the opposite orientation

e) $\mathbf{r}(b-t)$ for $0 \le t \le b-a$ is also a parameterization of C with the opposite orientation

Example 126. Find a parameterization of the curve C that consists of the portion of the curve $y = x^2 + 1$ from (2,5) to (-1,2) and use it to write the integral $\int_C x^2 + y^2 ds$ as an integral with respect to your parameter.

§16.2 Vector Fields & Vector Line Integrals

Vector Fields:

Definition 127. A vector field is a function $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ which associates a vector to every point in its domain.

Examples:

•	Graphically: For each point (a, b) in the domain of F , draw the vector $\mathbf{F}(a, b)$ with its base at
•	(a,b).
•	Tools: CalcPlot3d Field Play

Field Flay

Idea: In many physical processes, we care about the total sum of the strength of that part of a field that lies either in the direction of a curve or perpendicular to that curve.

1. The _____ by a field \mathbf{F} on an object moving along a curve C is given by

Example 128. Work Done by a Field. Suppose we have a force field $\mathbf{F}(x, y) = \langle x, y \rangle$ N. Find the work done by **F** on a moving object from (0,3) to (3,0) in a straight line, where x, y are measured in meters.

1. The ______ along a curve C of a velocity field \mathbf{F} for a fluid in motion is given by

When C is _____, this is called _____. C is called _____. C is called _____.

Example 129. Flow of a Velocity Field. Find the circulation of the velocity field $\mathbf{F}(x, y) = \langle -y, x \rangle$ cm/s around the unit circle, parameterized counterclockwise.

Example 130. You try it! What is the circulation of $\mathbf{F}(x, y) = \langle x, y \rangle$ around the unit circle, parameterized counterclockwise?

Strategy for computing tangential component line integrals e.g. work, flow, circulation integrals

- 1. Find a parameterization $\mathbf{r}(t)$, $a \leq t \leq b$ for the curve C.
- 2. Compute $\mathbf{r}'(t)$.
- 3. Substitute: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$
- 4. Integrate

Idea: _______ across a plane curve of a 2D-vector field measures the flow of the field across that curve (instead of along it).

We compute this with the integral

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds.$$

The sign of the flux integral tells us whether the net flow of the field across the curve is in the direction of ______ or in the opposite direction.

We can choose ${\bf n}$ to be either of

Strategy for computing normal component line integrals

e.g. flux integrals

- 1. Find a parameterization $\mathbf{r}(t)$, $a \leq t \leq b$ for the curve C.
- 2. Compute x'(t) and y'(t) and determine which normal to work with.
- 3. Substitute: $\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \pm \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle y'(t), -x'(t) \rangle \, dt$ (sign based on choice of normal)
- 4. Integrate

Example 131. Flux of a Velocity Field. Compute the flux of the velocity field $\mathbf{v} = \langle 3 + 2y - y^2/3, 0 \rangle$ cm/s across the quarter of the ellipse $\frac{x^2}{9} + \frac{y^2}{36} = 1$ in the first quadrant, oriented away from the origin.

§16.3 Conservative Vector Fields & Fundamental Theorem

Definition 132. A vector field \mathbf{F} is **path independent** on an open region D if

 $_$ for all paths C in the region that have the same

endpoints.

When \mathbf{F} is path independent, we can use the simplest path from point A to point B to compute a line integral, and will often denote the line integral with points as bounds, e.g.

$$\int_{(0,1,2)}^{(3,1,1)} \mathbf{F} \cdot \mathbf{T} \, ds \qquad \text{or} \qquad \int_{(a,b)}^{(c,d)} \mathbf{F} \cdot d\mathbf{r}.$$

Example 133. If C is any closed path and \mathbf{F} is path independent on a region containing C, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

Question: Given F, how do we tell if it is path independent on a particular region?

For example, is $\mathbf{F}(x, y) = \langle x, y \rangle$ a path independent vector field on its domain?

Example 134. You try it! Last time, we saw that if C is the unit circle about the origin, oriented counterclockwise, then $\int_C \langle -y, x \rangle \cdot d\mathbf{r} = 2\pi$. From this, we can conclude:

A different idea: Suppose **F** is a gradient vector field, i.e. $\mathbf{F} = \nabla f$ for some function of multiple variables f. f is called a ______ for **F**. In this case we also say that **F** is **conservative**.

Is $\mathbf{F}(x, y) = \langle x, y \rangle$ conservative?

Theorem 135 (Fundamental Theorem of Line Integrals). If C is a smooth curve from the point A to the point B in the domain of a function f with continuous gradient on C, then

$$\int_C \nabla f \cdot \mathbf{T} \, ds = f(B) - f(A)$$

Example 136. Compute $\int_C \langle x, y \rangle \cdot d\mathbf{r}$ for the curve *C* shown below from (-1, 1) to (3, 2).

It follows that every conservative field is path independent.

In fact, by carefully constructing a potential function, we can show the converse is also true: _____

This leads to a better way to test for path-independence and a way to apply the FToLI.

Curl Test for Conservative Fields: Let $\mathbf{F} = P\mathbf{i}+Q\mathbf{j}+R\mathbf{k}$ be a vector field defined on a simply-connected region. If curl $\mathbf{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = \langle 0, 0, 0 \rangle$, then \mathbf{F} is conservative.

- If **F** is a 2-d vector field, $\operatorname{curl} \mathbf{F} =$
- This is also called the **mixed-partials test**, because

Example 137. Evaluate $\int_C (10x^4 - 2xy^3) dx - 3x^2y^2 dy$ where *C* is the part of the curve $x^5 - 5x^2y^2 - 7x^2 = 0$ from (3, -2) to (3, 2).

§16.4 Divergence, Curl, Green's Theorem

Useful notation: $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$

So if f(x, y, z) is a function of three variables, $\nabla f = \left\langle \frac{\partial}{\partial x}(f), \frac{\partial}{\partial y}(f), \frac{\partial}{\partial z}(f) \right\rangle$

If $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ is a vector field:

- $\nabla \cdot \mathbf{F} =$
- $\nabla \times \mathbf{F} =$

How do we measure the change of a vector field?

• If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$: we use $\nabla \times \mathbf{F} = \nabla \times \langle P, Q, 0 \rangle$

- 2. Divergence (in any \mathbb{R}^n)
 - Tells us _____
 - Measures _____
 - Is a _____
 - div $\mathbf{F} =$

Example 138. Let $\mathbf{F}(x, y) = \langle x, y \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.

Example 139. You try it! Let $\mathbf{F}(x, y) = \langle -y, x \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.

Question: How is this useful?

Answer: We can relate ______ inside a region to the behavior of the vector field on the boundary of the region.

Theorem 140 (Green's Theorem). Suppose C is a piecewise smooth, simple, closed curve enclosing on its left a region R in the plane with outward oriented unit normal **n**. If $\mathbf{F} = \langle P, Q \rangle$ has continuous partial derivatives around R, then

a) Circulation form:

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C P \, dx + Q \, dy = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA = \iint_R Q_x - P_y \, dA$$

b) Flux form:

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C P \, dy - Q \, dx = \iint_R (\nabla \cdot \mathbf{F}) \, dA = \iint_R P_x + Q_y \, dA$$

Example 141. Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = \langle -y^2, xy \rangle$ where *C* is the boundary of the square bounded by x = 0, x = 1, y = 0, and y = 1 oriented counterclockwise.

Example 142. Compute the flux out of the region R which is the portion of the annulus between the circles of radius 1 and 3 in the first octant for the vector field $\mathbf{F} = \langle \frac{1}{3}x^3, \frac{1}{3}y^3 \rangle.$

Example 143. Let *R* be the region bounded by the curve $\mathbf{r}(t) = \langle \sin(2t), \sin(t) \rangle$ for $0 \le t \le \pi$. Find the area of *R*, using Green's Theorem applied to the vector field $\mathbf{F} = \frac{1}{2} \langle x, y \rangle$.

Note: This is the idea behind the operation of the measuring instrument known as a planimeter.

§16.5, 16.6 Surfaces & Surface Integrals

Different ways to think about curves and surfaces:

	Curves	Surfaces
Explicit:	y = f(x)	z = f(x, y)
Implicit:	F(x,y) = 0	F(x, y, z) = 0
Parametric Form:	$\mathbf{r}(t) = \langle x(t), y(t) \rangle$	

Example 144. Give parameteric representations for the surfaces below.

a)
$$x = y^2 + \frac{1}{2}z^2 - 2$$

b) The portion of the surface $x = y^2 + \frac{1}{2}z^2 - 2$ which lies behind the yz-plane.

c) $x^2 + y^2 + z^2 = 9$

d)
$$x^2 + y^2 = 25$$

What can we do with this?

If our parameterization is **smooth** ($\mathbf{r}_u, \mathbf{r}_v$ not parallel in the domain), then:

- $\mathbf{r}_u \times \mathbf{r}_v$ is _____
- A rectangle of size $\Delta u \times \Delta v$ in the *uv*-domain is mapped to a rectangle of size ______ on the surface in \mathbb{R}^3 .

• Thus, Area(S) =

Example 145. You try it! Find the area of the portion of the cylinder $x^2 + y^2 = 25$ between z = 0 and z = 1.

Example 146. Suppose the density of a thin plate S in the shape of the portion of the plane x + y + z = 1 in the first octant is $\delta(x, y, z) = 6xy$. Find the mass of the plate.

§16.6, 16.7 Flux Surface Integrals, Stokes' Theorem

Goal: If **F** is a vector field in \mathbb{R}^3 , find the total flux of **F** through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is in the direction of ______

If $\mathbf{r}(u, v)$ is a smooth parameterization of S with domain R, we have

flux of **F** through
$$S = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, d\sigma = \iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA.$$

Example 147. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $\|\mathbf{r}_u \times \mathbf{r}_v\|$ when z = f(x, y) so that S is the graph of a scalar function with domain in \mathbb{R}^2 .

Example 148. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $||\mathbf{r}_u \times \mathbf{r}_v||$ when S is a portion of a sphere of radius $\rho = a$, for some fixed constant a, using the standard spherical coordinates for your parametrization.

 $G(x, y, z) = x^2$, $S: x^2 + y^2 + z^2 = 1$

Example 151. You try it! Suppose S is a smooth surface in \mathbb{R}^3 and **F** is a vector field in \mathbb{R}^3 . True or False: If $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma > 0$, then the angle between **F** and **n** is acute at all points on S.

Example 152. You try it! Based on the plot of the vector field \mathbf{F} and the surface S below, oriented in the positive y-direction, is the flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ positive, negative, or zero?

Recall: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field, we defined its:

1. divergence: $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$

2. curl:
$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Example 153. You try it! Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field in \mathbb{R}^3 with continuous partial derivatives. Compute the divergence of the curl of \mathbf{F} , i.e. $\nabla \cdot (\nabla \times \mathbf{F})$.

Theorem 154 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds$$

- If S is a region R in the xy-plane, then we get:
- An oriented surface is one where _____
- S and C are oriented compatibly if:

Example 155. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by calculating the flux across the interior of C.

$$\mathbf{F} = \langle y, xz, x^2 \rangle$$

C: boundary of x + y + z + 1 in first octant,

oriented counter-clockwise from above.

Example 156. You try it! Use Stokes' Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ the flux of \mathbf{F} across S by calculating the circulation line integral around the boundary curve C of S.

$$\mathbf{F} = \langle 2z, 3x, 5y \rangle$$
$$S : \mathbf{r}(r, \theta) = \langle r \cos \theta, r \sin \theta, (4 - r^2) \rangle$$
$$R : r \in [0, 2], \ \theta \in [0, 2\pi]$$

§16.7 Stokes' Theorem

Theorem 157 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds.$$

Example 158 (DD). Let $\mathbf{F} = \langle -y, x + (z-1)x^{x\sin(x)}, x^2 + y^2 \rangle$. Find $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$ over the surface S which is the part of the sphere $x^2 + y^2 + z^2 = 2$ above z = 1, oriented away from the origin.

Question: What can we say if two different surfaces S_1 and S_2 have the same oriented boundary C?

Example 159. Suppose curl $\mathbf{F} = \langle y^{y^y} \sin(z^2), (y-1)e^{x^{x^x}} + 2, -ze^{x^{x^x}} \rangle$. Compute the net flux of the curl of \mathbf{F} over the surface pictured below, which is oriented outward and whose boundary curve is a unit circle centered on the *y*-axis in the plane y = 1.

§16.8 Divergence Theorem

Theorem 160 (Divergence Theorem). Let S be a closed surface oriented outward, D be the volume inside S, and \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \ dV$$

Example 161. Let $\mathbf{F} = \langle y^{1234}e^{\sin(yz)}, y - x^{z^x}, z^2 - z \rangle$ and S be the surface consisting of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3, together with top and bottom disks, oriented outward. Find the flux of \mathbf{F} through S.

Final Exam Review

Questions/Topics?

Example 162. Evaluate the integral $\int_C y^2 dx + x^2 dy$ where C is the circle $x^2 + y^2 = 4$.

Example 165. Find the flux of the field $\mathbf{F} = \langle 2xy + x, xy - y \rangle$ outward across the boundary of the square bounded by x = 0, x = 1, y = 0, x = 1.

Example 166. Find the flux of $\mathbf{F} = xz\mathbf{i} + yz\mathbf{j} + \mathbf{k}$ across the upper cap cut from the sphere $x^2 + y^2 + z^2 = 25$ by the plane z = 3, oriented away from the *xy*-plane.