§16.7 Stokes' Theorem

Theorem 157 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds.$$

Example 158 (DD). Let $\mathbf{F} = \langle -y, x + (z-1)x^{x\sin(x)}, x^2 + y^2 \rangle$. Find $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$ over the surface S which is the part of the sphere $x^2 + y^2 + z^2 = 2$ above z = 1, oriented away from the origin.

Question: What can we say if two different surfaces S_1 and S_2 have the same oriented boundary C?

Example 159. Suppose curl $\mathbf{F} = \langle y^{y^y} \sin(z^2), (y-1)e^{x^{x^x}} + 2, -ze^{x^{x^x}} \rangle$. Compute the net flux of the curl of \mathbf{F} over the surface pictured below, which is oriented outward and whose boundary curve is a unit circle centered on the *y*-axis in the plane y = 1.

§16.8 Divergence Theorem

Theorem 160 (Divergence Theorem). Let S be a closed surface oriented outward, D be the volume inside S, and \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \ dV$$

Example 161. Let $\mathbf{F} = \langle y^{1234}e^{\sin(yz)}, y - x^{z^x}, z^2 - z \rangle$ and S be the surface consisting of the portion of cylinder of radius 1 centered on the z-axis between z = 0 and z = 3, together with top and bottom disks, oriented outward. Find the flux of \mathbf{F} through S.