MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today:

- Set classroom norms
- Describe the big-picture goals of the class
- Review \mathbb{R}^3 and the dot product
- Introduce the cross product and its properties

Class Values/Norms:

- Mistakes are a learning opportunity
- Mathematics is collaborative
- Make sure everyone is included
- Criticize ideas, not people
- Be respectful of everyone
- •

Sections 12.1, 12.4, 12.5

Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

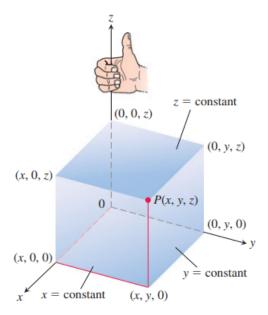
Differential Calculus

Integral Calculus

Before: we studied single-variable functions $f : \mathbb{R} \to \mathbb{R}$ like $f(x) = 2x^2 - 6$.

Now: we will study **multi-variable functions** $f : \mathbb{R}^n \to \mathbb{R}^m$: each of these functions is a rule that assigns one output vector with m entries to each input vector with n entries.

§12.1: Three-Dimensional Coordinate Systems



Question: What shape is the set of solutions $(x, y, z) \in \mathbb{R}^3$ to the equation $x^2 + y^2 = 1$?

Page 4

§12.3, 12.4: Dot & Cross Products

Definition 1. The **dot product** of two vectors $\mathbf{u} = \langle u_1, u_2, \ldots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \ldots, v_n \rangle$ is

This product tells us about _____

In particular, two vectors are **orthogonal** if and only if their dot product is _____.

Example 2. Are $\mathbf{u} = \langle 1, 1, 4 \rangle$ and $\mathbf{v} = \langle -3, -1, 1 \rangle$ orthogonal?

 $\ensuremath{\textbf{Goal:}}$ Given two vectors, produce a vector orthogonal to both of them in a "nice" way.

1.

2.

Definition 3. The cross product of two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 is **Example 4.** Find $\langle 1, 2, 0 \rangle \times \langle 3, -1, 0 \rangle$.

A Geometric Interpretation of $\mathbf{u}\times\mathbf{v}$

The cross product $\mathbf{u}\times\mathbf{v}$ is the vector

 $\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta)\mathbf{n}$

where \mathbf{n} is a unit vector which is normal to the plane spanned by \mathbf{u} and \mathbf{v} .

Since **n** is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is the area of the parallelogram spanned by **u** and **v**.

 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

Example 5. Find the area of the parallelogram determined by the points P, Q, and R.

P(1,1,1), Q(2,1,3), R(3,-1,1)

§12.5 Lines & Planes

Lines in \mathbb{R}^2 , a new perspective:

Example 6. Find a vector equation for the line that goes through the points P = (1, 0, 2) and Q = (-2, 1, 1).

Planes in \mathbb{R}^3

Conceptually: A plane is determined by either three points in \mathbb{R}^3 or by a single point and a direction **n**, called the *normal vector*.

Algebraically: A plane in \mathbb{R}^3 has a *linear* equation (back to Linear Algebra! imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

Example 7. Consider the planes y - z = -2 and x - y = 0. Show that the planes intersect and find an equation for the line passing through the point P = (-8, 0, 2) which is parallel to the line of intersection of the planes.

§12.6 Quadric Surfaces

Definition 8. A quadric surface in \mathbb{R}^3 is the set of points that solve a quadratic equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to examine their cross-sections.

Example 9. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$.

12.6 Cylinders and Quadric Surfaces 743

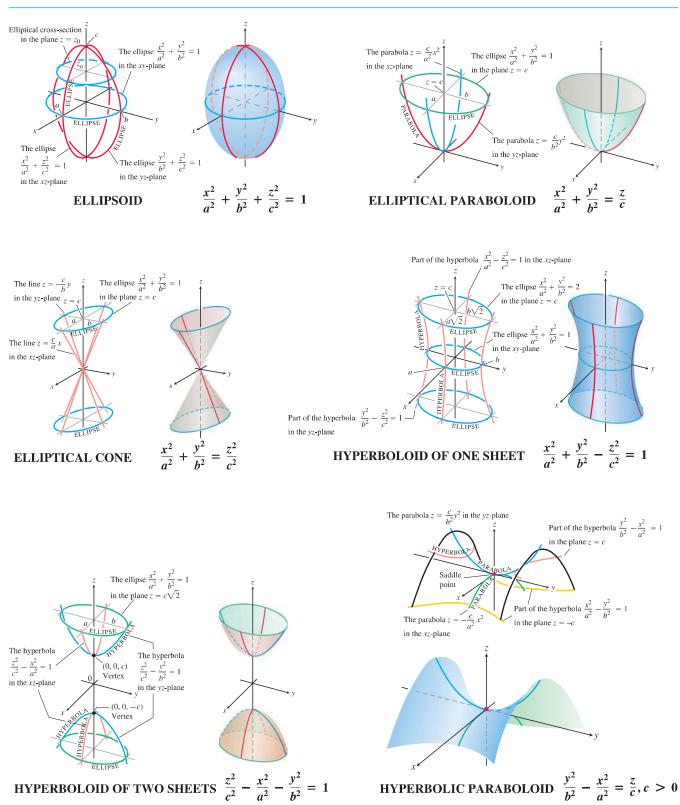


TABLE 12.1 Graphs of Quadric Surfaces

§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other onedimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is

C is called ______ the curve C, and \mathbf{r} is called a ______ of

Example 10. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?

§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with <u>limits</u>:

Example 11. Compute $\lim_{t\to e} \langle t^2, 2, \ln(t) \rangle$.

And with continuity:

Example 12. Determine where the function $\mathbf{r}(t) = t\mathbf{i} - \frac{1}{t^2 - 4}\mathbf{j} + \sin(t)\mathbf{k}$ is continuous.

And with <u>derivatives</u>:

Example 13. If $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$, find $\mathbf{r}'(t)$.

Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t, then

- $\mathbf{r}'(t)$ gives _____
- $|\mathbf{r}'(t)|$ gives _____
- $\mathbf{r}''(t)$ gives _____

Let's see this graphically

Example 14. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.

And with integrals:

Example 15. Find $\int_0^1 \langle t, e^{2t}, \sec^2(t) \rangle dt$.

At this point we can solve initial-value problems like those we did in single-variable calculus:

Example 16. Wallace is testing a rocket to fly to the moon, but he forgot to include instruments to record his position during the flight. He knows that his velocity during the flight was given by

$$\mathbf{v}(t) = \langle -200\sin(2t), 200\cos(t), 400 - \frac{400}{1+t} \rangle \ m/s.$$

If he also knows that he started at the point $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, use calculus to reconstruct his flight path.