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MATH 2551 GT-E w/ Dr. Sal Barone

- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.4, 12.5

e Set classroom norms
e Describe the big-picture goals of the class
e Review R? and the dot product

e Introduce the cross product and its properties
Class Values/Norms:

e Mistakes are a learning opportunity

Mathematics is collaborative

Make sure everyone is included

Criticize ideas, not people

Be respectful of everyone
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Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

Differential Calculus Integral Calculus

Before: we studied single-variable functions f : R — R like f(z) = 222 — 6.

Now: we will study multi-variable functions f : R” — R™: each of these functions
is a rule that assigns one output vector with m entries to each input vector with n
entries.
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§12.1: Three-Dimensional Coordinate Systems

Z = constant
(0.0, z2) /
(0, v 2)
(x,0,2)
U P(_\'. ¥ :)
(0, y, 0)
‘\-"—-H y
(0,00 \
/ 71% y = constant
x X = constant {_1: 1 0)

Question: What shape is the set of solutions (z,y, 2) € R? to the equation 22 +y? =
1?7
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§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors u = (uj,us,...,u,) and v =
(1,09, ..., Uy) is
M-V =

This product tells us about

In particular, two vectors are orthogonal if and only if their dot product is

Example 2. Are u= (1,1,4) and v = (—3, —1, 1) orthogonal?
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice”
way.

Definition 3. The cross product of two vectors u = (uy, us, ug) and v = (vq, vo, v3)
in R3 is
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Example 4. Find (1,2,0) x (3, —1,0).



§12.3, 124 Page 7

A Geometric Interpretation of u x v

The cross product u x v is the vector

u x v = (Jul|v|sinf)n

where n is a unit vector which is normal to the plane spanned by u and v.

Since n is a unit vector, the magnitude of u x v is the area of the parallelogram
spanned by u and v.

lu x v| = |u||v|sind

Example 5. Find the area of the parallelogram determined by the points P, @),
and R.
P(1,1,1), Q(2,1,3), R(3,—1,1)
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§12.5 Lines & Planes

Lines in R?, a new perspective:

Example 6. Find a vector equation for the line that goes through the points P =
(1,0,2) and Q@ = (—2,1,1).
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Planes in R?

Conceptually: A plane is determined by either three points in R? or by a single
point and a direction n, called the normal vector.

Algebraically: A plane in R? has a linear equation (back to Linear Algebra! im-
posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)
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Example 7. Consider the planes y — z = —2 and x — y = 0. Show that the planes
intersect and find an equation for the line passing through the point P = (-8, 0, 2)
which is parallel to the line of intersection of the planes.
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§12.6 Quadric Surfaces

Definition 8. A quadric surface in R? is the set of points that solve a quadratic
equation in z,y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to
examine their cross-sections.

Example 9. Use cross-sections to sketch and identify the quadric surface x = 22+y2.
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12.6 Cylinders and Quadric Surfaces

TABLE 12.1 Graphs of Quadric Surfaces
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§13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R? and R? as well. We said that a function r : R — R?
with r(t) = vt + ro produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number ¢ and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C' in space, producing a vector-valued function r whose graph is

C' is called the curve C, and r is called a of

C.
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Example 10. Consider ri(t) = (cos(t),sin(t),t) and ry(t) = (cos(2t),sin(2t), 2t),
each with domain [0, 27]. What do you think the graph of each looks like? How are
they similar and how are they different?

Check your intuition


https://tinyurl.com/math2551-vvfns-hlx
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute }fim(t2,2,ln(t)>.
—e

And with continuity:

Example 12. Determine where the function r(t) = i — » 4j + sin(t)k is contin-

uous.
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And with derivatives:

Example 13. If r(t) = (2t — 1 + 1,¢ — 1), find r'(¢).

Interpretation: If r(t) gives the position of an object at time ¢, then

o 1r'(t) gives

o |r'(t)| gives

o r’(t) gives

Let’s see this graphically

Example 14. Find an equation of the tangent line to r(t) = (2t — 3t 4+ 1,t — 1) at
time ¢ = 2.


https://tinyurl.com/math2551-vvfnx-vel-accel
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And with integrals:

Example 15. Find fol (t, e sec?(t)) dt.

At this point we can solve initial-value problems like those we did in single-variable

calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

400

(—2005sin(2t), 200 cos(t), 400 — 1——|—t> m/s.

v(t)

If he also knows that he started at the point r(0) = (0,0, 0),
use calculus to reconstruct his flight path.




