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MATH 2551 GT-E w/ Dr. Sal Barone
- Dr. Barone, Prof. Sal, or just Sal, as you prefer

Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.4, 12.5

• Set classroom norms

• Describe the big-picture goals of the class

• Review R3 and the dot product

• Introduce the cross product and its properties

Class Values/Norms:

• Mistakes are a learning opportunity

• Mathematics is collaborative

• Make sure everyone is included

• Criticize ideas, not people

• Be respectful of everyone

•

•
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Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

Differential Calculus Integral Calculus

Before: we studied single-variable functions f : R → R like f(x) = 2x2 − 6.

Now: we will studymulti-variable functions f : Rn → Rm: each of these functions
is a rule that assigns one output vector with m entries to each input vector with n
entries.
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§12.1: Three-Dimensional Coordinate Systems

Question: What shape is the set of solutions (x, y, z) ∈ R3 to the equation x2+y2 =
1?



§12.3, 12.4 Page 4

§12.3, 12.4: Dot & Cross Products

Definition 1. The dot product of two vectors u = ⟨u1, u2, . . . , un⟩ and v =
⟨v1, v2, . . . , vn⟩ is

u · v =

This product tells us about .

In particular, two vectors are orthogonal if and only if their dot product is .

Example 2. Are u = ⟨1, 1, 4⟩ and v = ⟨−3,−1, 1⟩ orthogonal?
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice”
way.

1.

2.

Definition 3. The cross product of two vectors u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩
in R3 is
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Example 4. Find ⟨1, 2, 0⟩ × ⟨3,−1, 0⟩.



§12.3, 12.4 Page 7

A Geometric Interpretation of u× v

The cross product u× v is the vector

u× v = (|u||v| sin θ)n

where n is a unit vector which is normal to the plane spanned by u and v.

Since n is a unit vector, the magnitude of u × v is the area of the parallelogram
spanned by u and v.

|u× v| = |u||v| sin θ

Example 5. Find the area of the parallelogram determined by the points P , Q,
and R.

P (1, 1, 1), Q(2, 1, 3), R(3,−1, 1)
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§12.5 Lines & Planes

Lines in R2, a new perspective:

Example 6. Find a vector equation for the line that goes through the points P =
(1, 0, 2) and Q = (−2, 1, 1).



§12.5 Page 9

Planes in R3

Conceptually: A plane is determined by either three points in R3 or by a single
point and a direction n, called the normal vector.

Algebraically: A plane in R3 has a linear equation (back to Linear Algebra! im-
posing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)
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Example 7. Consider the planes y − z = −2 and x− y = 0. Show that the planes
intersect and find an equation for the line passing through the point P = (−8, 0, 2)
which is parallel to the line of intersection of the planes.
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§12.6 Quadric Surfaces

Definition 8. A quadric surface in R3 is the set of points that solve a quadratic
equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to
examine their cross-sections.

Example 9. Use cross-sections to sketch and identify the quadric surface x = z2+y2.
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§13.1 Curves in Space & Their Tangents
The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R2 and R3 as well. We said that a function r : R → R3

with r(t) = vt+ r0 produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number t and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function r whose graph is

C is called the curve C, and r is called a of

C.
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Example 10. Consider r1(t) = ⟨cos(t), sin(t), t⟩ and r2(t) = ⟨cos(2t), sin(2t), 2t⟩,
each with domain [0, 2π]. What do you think the graph of each looks like? How are
they similar and how are they different?

Check your intuition

https://tinyurl.com/math2551-vvfns-hlx
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§13.2: Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 11. Compute lim
t→e

⟨t2, 2, ln(t)⟩.

And with continuity:

Example 12. Determine where the function r(t) = ti− 1

t2 − 4
j+ sin(t)k is contin-

uous.
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And with derivatives:

Example 13. If r(t) = ⟨2t− 1
2t

2 + 1, t− 1⟩, find r′(t).

Interpretation: If r(t) gives the position of an object at time t, then

• r′(t) gives

• |r′(t)| gives

• r′′(t) gives

Let’s see this graphically

Example 14. Find an equation of the tangent line to r(t) = ⟨2t− 1
2t

2 + 1, t− 1⟩ at
time t = 2.

https://tinyurl.com/math2551-vvfnx-vel-accel
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And with integrals:

Example 15. Find
∫ 1

0 ⟨t, e
2t, sec2(t)⟩ dt.

At this point we can solve initial-value problems like those we did in single-variable
calculus:

Example 16. Wallace is testing a rocket to fly to the
moon, but he forgot to include instruments to record his
position during the flight. He knows that his velocity dur-
ing the flight was given by

v(t) = ⟨−200 sin(2t), 200 cos(t), 400− 400

1 + t
⟩ m/s.

If he also knows that he started at the point r(0) = ⟨0, 0, 0⟩,
use calculus to reconstruct his flight path.


