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§13.3 Arc length of curves

We have discussed motion in space using by equations like r(t) = ⟨x(t), y(t), z(t)⟩.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time t is

r(t) = ⟨2 cos(t), 2 sin(t)⟩,

where 0 ≤ t ≤ 2π.

a)Sketch the graph of r(t). What shape is this?

b)How far does the fly travel between t = 0 and t = π?

c)What is the speed ∥v(t)∥ of the fly at time t?

d)Compute the integral

∫ π

0

∥v(t)∥ dt. What do you notice?
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Definition 17. We say that the arc length of a smooth curve

r(t) = ⟨x(t), y(t), z(t)⟩ from to that is traced out ex-

actly once is

L =

Example 18. Set up an integral for the arc length of the curve r(t) = ti+ t2j+ t3k
from the point (1, 1, 1) to the point (2, 4, 8).
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Example 19. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ⟨6 sin(2t), 6 cos(2t), 5t⟩, 0 ≤ t ≤ 2π.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Example 20. You try it! Find the length of the portion of the curve in R3 given
by the parametrization r(t) = ti+ 2

3t
3/2k, 0 ≤ t ≤ 8.

Check your intuition

https://tinyurl.com/ma2551-13-3-ex20
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Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t0 to an
arbitrary time t, which is given by the arc length function.

s(t) =

We can use this function to produce parameterizations of curves where the parameter
s measures distance along the curve: the points where s = 0 and s = 1 would be
exactly 1 unit of distance apart.
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Example 21. Find an arc length parameterization of the circle of radius 4 about
the origin in R2, r(t) = ⟨4 cos(t), 4 sin(t)⟩, 0 ≤ t ≤ 2π.
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Example 22. You try it! Find (a) an arc length parameterization s(t) of the
curve C, the portion of the helix of radius 4 in R3 parametrized by r(t) =
⟨4 cos(t), 4 sin(t), 3t⟩, 0 ≤ t ≤ π/2, and (b) use s(t) to find L the length of C
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§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with
two vectors that orient the curve.

First, we need the unit tangent vector, denoted T:

• In terms of an arc-length parameter s:

• In terms of any parameter t:

This lets us define the curvature, κ(s) =
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Example 23. In Example 21 we found an arc length parameterization of the circle
of radius 4 centered at (0, 0) in R2:

r(s) =
〈
4 cos

(s
4

)
, 4 sin

(s
4

)〉
, 0 ≤ s ≤ 8π.

Use this to find T(s) and κ(s).

Question: In which direction is T changing?

This is the direction of the principal unit normal, N(s) =
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We said last time that it is often hard to find arc length parameterizations, so what
do we do if we have a generic parameterization r(t)?

• T(t) =

• κ(t) = or

• N(t) =

Example 24. Find T,N, κ for the helix r(t) = ⟨2 cos(t), 2 sin(t), t− 1⟩, t ∈ R.
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Example 25. You try it! Find T,N, κ for the curve parametrized by

r(t) = (cos t+ t sin t)i+ (sin t− t cos t)j+ 3k, t ∈ R.
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§14.1 Functions of Multiple Variables

Definition 26. A is a rule that as-

signs to each of real numbers (x, y) in a setD a

denoted by f(x, y).

f : D → R, where D ⊆ R2

Example 27. Three examples are

f(x, y) = x2 + y2, g(x, y) = ln(x+ y), h(x, y) =
1√
x+ y

.

Example 28. Find the largest possible domains of f, g, and h.

Definition 29. If f is a function of two variables with domain D, then the graph
of f is the set of all points (x, y, z) in R3 such that z = f(x, y) and (x, y) is in D.

Here are the graphs of the three functions above.

https://tinyurl.com/math2551-f23-2var-graphs
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Example 30. Suppose a small hill has height h(x, y) = 4 − 1

4
x2 − 1

4
y2 m at each

point (x, y). How could we draw a picture that represents the hill in 2D?

In 3D, it looks like this.

Definition 31. The (also called ) of a function

f of two variables are the curves with equations , where k is a

constant (in the range of f). A plot of for various values of z is a

(or ).

Some common examples of these are:

•

•

•

https://tinyurl.com/math2551-2var-first-ex-graph
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Definition 32. The of a surface are the curves of

of the surface with planes parallel to the

.

Example 33. Use the traces and contours of z = f(x, y) = 4 − 2x − y2 to sketch
the portion of its graph in the first octant.

Let’s check our work: https://tinyurl.com/math2551-2var-graph

https://tinyurl.com/math2551-2var-graph
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Definition 34. A is a rule that
assigns to each of real numbers (x, y, z) in a set D a

denoted by f(x, y, z).

f : D → R, where D ⊆ R3

We can still think about the domain and range of these functions. Instead of level
curves, we get level surfaces.

Example 35. Describe the domain of the function f(x, y, z) =
1

4− x2 − y2 − z2
.

Example 36. Describe the level surfaces of the function g(x, y, z) = 2x2 + y2 + z2.



§14.2 Page 33

§14.2 Limits & Continuity

Definition 37. What is a limit of a function of two variables?

We won’t use this definition much: the big idea is that lim
(x,y)→(x0,y0)

f(x, y) = L if and

only if f(x, y) regardless of how we approach
(x0, y0).

Definition 38. A function f(x, y) is continuous at (x0, y0) if

1.

2.

3.

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous
functions results in another continuous function.
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Example 39. Evaluate lim
(x,y)→(2,0)

√
2x− y − 2

2x− y − 4
, if it exists.
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Example 40. You try it! Evaluate lim
(x,y)→(π2 ,0)

cos y + 1

y − sin x
, if it exists.
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Sometimes, life is harder in R2 and limits can fail to exist in ways that are very
different from what we’ve seen before.

Big Idea: Limits can behave differently along different paths of approach

Example 41. Evaluate lim
(x,y)→(0,0)

x2

x2 + y2
, if it exists. Here is its graph.

This idea is called the two-path test:

If we can find to (x0, y0) along

which takes on two different values, then

.

https://tinyurl.com/math2551-two-path-graph
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Example 42. Show that the limit

lim
(x,y)→(0,0)

x2y

x4 + y2

does not exist.
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Example 43. You try it! Show that the limit lim
(x,y)→(0,0)

x4

x4 + y2
is dne by using the

two-path test.
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Example 44. [Challenge:] Show that the limit

lim
(x,y)→(0,0)

x4y

x4 + y2

does exist using the Squeeze Theorem.

Theorem 45 (Squeeze Theorem). If f(x, y) = g(x, y)h(x, y), where

lim(x,y)→(a,b) g(x, y) = 0 and |h(x, y)| ≤ C for some constant C near (a, b), then

lim(x,y)→(a,b) f(x, y) = 0.


