§13.3 Arc length of curves

We have discussed motion in space using by equations like $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

Our next goal is to be able to measure <u>distance traveled</u> or arc length.

Motivating problem: Suppose the position of a fly at time t is

$$\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle,$$

where $0 \le t \le 2\pi$.

a) Sketch the graph of $\mathbf{r}(t)$. What shape is this?

b) How far does the fly travel between t = 0 and $t = \pi$?

c) What is the speed $\|\mathbf{v}(t)\|$ of the fly at time t?

d)Compute the integral $\int_0^{\pi} \|\mathbf{v}(t)\| dt$. What do you notice?

Definition 17. We say that the **arc length** of a smooth curve

 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ from ______ to _____ that is traced out exactly once is

Example 18. Set up an integral for the arc length of the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ from the point (1, 1, 1) to the point (2, 4, 8).

Example 19. You try it! Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = \langle 6\sin(2t), 6\cos(2t), 5t \rangle, \ 0 \le t \le 2\pi$.

Example 20. You try it! Find the length of the portion of the curve in \mathbb{R}^3 given by the parametrization $\mathbf{r}(t) = t\mathbf{i} + \frac{2}{3}t^{3/2}\mathbf{k}, \ 0 \le t \le 8.$

Arc length parametrization

Sometimes, we care about the distance traveled from a fixed starting time t_0 to an arbitrary time t, which is given by the **arc length function**.

$$s(t) =$$

We can use this function to produce parameterizations of curves where the parameter s measures distance along the curve: the points where s = 0 and s = 1 would be exactly 1 unit of distance apart.

Example 21. Find an arc length parameterization of the circle of radius 4 about the origin in \mathbb{R}^2 , $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t) \rangle, 0 \le t \le 2\pi$.

Example 22. You try it! Find (a) an arc length parameterization s(t) of the curve C, the portion of the helix of radius 4 in \mathbb{R}^3 parametrized by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle, 0 \le t \le \pi/2$, and (b) use s(t) to find L the length of C

§13.3 & 13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the <u>curvature</u> of a curve in space along with two vectors that orient the curve.

First, we need the **unit tangent vector**, denoted \mathbf{T} :

• In terms of an arc-length parameter s: _____

• In terms of any parameter t: _____

This lets us define the **curvature**, $\kappa(s) =$ ______

Example 23. In Example 21 we found an arc length parameterization of the circle of radius 4 centered at (0, 0) in \mathbb{R}^2 :

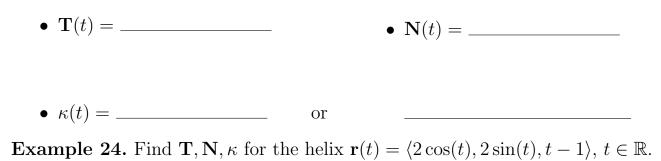
$$\mathbf{r}(s) = \left\langle 4\cos\left(\frac{s}{4}\right), 4\sin\left(\frac{s}{4}\right) \right\rangle, \qquad 0 \le s \le 8\pi.$$

Use this to find $\mathbf{T}(s)$ and $\kappa(s)$.

Question: In which direction is \mathbf{T} changing?

This is the direction of the **principal unit normal**, N(s) =

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization $\mathbf{r}(t)$?



Example 25. You try it! Find $\mathbf{T}, \mathbf{N}, \kappa$ for the curve parametrized by

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}, \ t \in \mathbb{R}.$$

§14.1 Functions of Multiple Variables

Definition 26. A ______ is a rule that as-

signs to each ______ of real numbers (x, y) in a set D a ______ denoted by f(x, y).

 $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^2$

Example 27. Three examples are

$$f(x,y) = x^2 + y^2$$
, $g(x,y) = \ln(x+y)$, $h(x,y) = \frac{1}{\sqrt{x+y}}$

Example 28. Find the largest possible domains of f, g, and h.

Definition 29. If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Here are the graphs of the three functions above.

Example 30. Suppose a small hill has height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ m at each point (x, y). How could we draw a picture that represents the hill in 2D?

In 3D, it looks like this.

Definition 31. The ______ (also called ______) of a function f of two variables are the curves with equations ______, where k is a constant (in the range of f). A plot of ______ for various values of z is a ______(or ______).

Some common examples of these are:

- •
- •
- •
- •

Definition 32. The ______ of a surface are the curves of ______ of the surface with planes parallel to the

Example 33. Use the traces and contours of $z = f(x, y) = 4 - 2x - y^2$ to sketch the portion of its graph in the first octant.

Definition 34. A ______ is a rule that assigns to each ______ of real numbers (x, y, z) in a set D a ______ denoted by f(x, y, z).

 $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^3$

We can still think about the domain and range of these functions. Instead of level curves, we get level surfaces.

Example 35. Describe the domain of the function $f(x, y, z) = \frac{1}{4 - x^2 - y^2 - z^2}$.

Example 36. Describe the level surfaces of the function $g(x, y, z) = 2x^2 + y^2 + z^2$.

§14.2 Limits & Continuity

Definition 37. What is a limit of a function of two variables?

DEFINITION We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

 $|f(x, y) - L| < \epsilon$ whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

We won't use this definition much: the big idea is that $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ if and only if f(x,y) ______ regardless of how we approach (x_0, y_0) .

Definition 38. A function f(x, y) is continuous at (x_0, y_0) if

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous functions results in another continuous function.

Example 39. Evaluate $\lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{2x-y-4}$, if it exists.

Example 40. You try it! Evaluate $\lim_{(x,y)\to(\frac{\pi}{2},0)}\frac{\cos y+1}{y-\sin x}$, if it exists.

Sometimes, life is harder in \mathbb{R}^2 and limits can fail to exist in ways that are very different from what we've seen before.

Big Idea: Limits can behave differently along different paths of approach

Example 41. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$, if it exists. Here is its graph.

This idea is called the **two-path test:**

If	we	can	find				to	(x_0,y_0)	along
whi	.ch			 takes	on	two	different	values,	then

Example 42. Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$$

does not exist.

Example 43. You try it! Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ is DNE by using the

two-path test.

Example 44. [Challenge:] Show that the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4 + y^2}$$

does exist using the Squeeze Theorem.

Theorem 45 (Squeeze Theorem). If f(x,y) = g(x,y)h(x,y), where $\lim_{(x,y)\to(a,b)} g(x,y) = 0$ and $|h(x,y)| \leq C$ for some constant C near (a,b), then $\lim_{(x,y)\to(a,b)} f(x,y) = 0$.