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§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then fx represents the rate of change of z

in the x-direction and fy represents the rate of change of z in the y-direction. What

about other directions?
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Let’s go back to our hill example again, h(x, y) = 4 � 1

4
x
2 � 1

4
y
2. How could we

figure out the rate of change of our height from the point (2, 1) if we move in the

direction h�1, 1i?

Definition 62. The of f : Rn ! R at the point p

in the direction of a unit vector u is

Duf(p) =

if this limit exists.

E.g. for our hill example above we have:

https://tinyurl.com/math2551-hill-dir-deriv-ex
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Note that Dif = Djf = Dkf =

Definition 63. If f : Rn ! R, then the of f at p 2 Rn is the

vector function (or ) defined by

rf(p) =

Note: If f : Rn ! R is di↵erentiable at a point p, then f has a directional derivative

at p in the direction of any unit vector u and

Duf(p) =
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Example 64. You try it! Find the gradient vector and the directional derivative of

each function at the given point p in the direction of the given vector u.

a)f(x, y) = ln(x2 + y
2),p = (�1, 1),u =

⌧
1p
5
,
�2p
5

�

b)g(x, y, z) = x
2 + 4xy2 + z

2, p = (1, 2, 1), u the unit vector in the direction of

i+ 2j� k
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Example 65. If h(x, y) = 4� 1

4
x
2� 1

4
y
2, the contour map is given below. Find and

draw rh on the diagram at the points (2, 0), (0, 4), and (�
p
2,�

p
2). At the point

(2, 0), compute Duh for the vectors u1 = i,u2 = j,u3 = h 1p
2
,

1p
2
i.

Note that the gradient vector rf is to the level curves of the

function .

Similarly, for f(x, y, z), rf(a, b, c) is
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Example 66. You try it! Sketch the curve x2+ y
2 = 4 together with (a) the vector

rf |P and (b) the tangent line at P (
p
2,
p
2). Be sure to label the tangent line with

the equation which defines it.

x

y
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§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F (x, y, z) = k. How can we find an equation

of the tangent plane of S at P (x0, y0, z0)?

�4 �2 0 2 4 �5

0

5
�40

�20

0

x
2 + y

2 + z = 10, P = (�1, 3, 0)

https://tinyurl.com/math2551-tangent-plane-1
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Example 67. Find the equation of the tangent plane at the point (�2, 1,�1) to

the surface given by

z = 4� x
2 � y

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the

tangent plane is

This should look familiar: it’s

https://tinyurl.com/math2551-tangent-plane-2
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§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said rf(a, b) points in the

direction of greatest change of f .

Back to the hill h(x, y) = 4� 1

4
x
2 � 1

4
y
2.

What should we expect to get if we compute rh(0, 0)? Why? What does the

tangent plane to z = h(x, y) at (0, 0, 4) look like?

https://tinyurl.com/S-14-7-hill
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Definition 68. Let f(x, y) be defined on a region containing the point (a, b). We

say

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

• f(a, b) is a value of f if f(a, b) f(x, y) for all

domain points (x, y) in a disk centered at (a, b)

In R3, another interesting thing can happen. Let’s look at z = x
2� y

2 (a hyperbolic

paraboloid!) near (0, 0).

This is called a

Notice that in all of these examples, we have a horizontal tangent plane at the point

in question, i.e.

Definition 69. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) = or where Df(a, b)

is called a of f .

https://tinyurl.com/math2551-saddle-point-ex
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Example 70. Find the critical points of the function

f(x, y) = x
3 + y

3 � 3xy.
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Example 71. You try it! Determine which of the functions below have a critical

point at (0, 0) .

a)f(x, y) = 3x+ y
3 + 2y2

b)g(x, y) = cos(x) + sin(x)

c) h(x, y) =
4

x2 + y2

d)k(x, y) = x
2 + y

2
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To classify critical points, we turn to the second derivative test and the Hessian

matrix. The Hessian matrix of f(x, y) at (a, b) is

Hf(a, b) =

Theorem 72 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and

f has continuous second partial derivatives. Then we have:

• If det(Hf(a, b)) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum

• If det(Hf(a, b)) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum

• If det(Hf(a, b)) < 0, f has a saddle point at (a, b)

• If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if f : Rn ! R has a critical point at p then

• If all eigenvalues of Hf(p) are positive, f is concave up in every direction from
p and so has a local minimum at p.

• If all eigenvalues of Hf(p) are negative, f is concave down in every direction
from p and so has a local maximum at p.

• If some eigenvalues of Hf(p) are positive and some are negative, f is concave
up in some directions from p and concave down in others, so has neither a
local minimum or maximum at p.

• If all eigenvalues of Hf(p) are positive or zero, f may have either a local
minimum or neither at p.

• If all eigenvalues of Hf(p) are negative or zero, f may have either a local
maximum or neither at p.
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Example 73. Classify the critical points of f(x, y) = x
3 + y

3 � 3xy from Example

70.

https://tinyurl.com/math2551-critpt-ex-2
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Two Local Maxima, No Local Minimum: The function g(x, y) = �(x2� 1)2�
(x2y � x � 1)2 + 2 has two critical points, at (�1, 0) and (1, 2). Both are local

maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have f(a, b) �
f(x, y) for all (x, y) in the domain of f . A global minimum is defined similarly.

Theorem 74. On a closed & bounded domain, any continuous function f(x, y)

attains a global minimum & maximum.

Closed:

Bounded:

https://tinyurl.com/math2551-2max-only-ex
https://tinyurl.com/math2551-2max-only-ex
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Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 75. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.
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§14.8 Optimization: Global & Constrained,
Lagrange Multipliers

Strategy for finding global min/max of f(x, y) on a closed & bounded

domain R

1. Find all critical points of f inside R.

2. Find all critical points of f on the boundary of R

3. Evaluate f at each critical point as well as at any endpoints on the boundary.

4. The smallest value found is the global minimum; the largest value found is the

global maximum.

Example 76. Find the global minimum and maximum of f(x, y) = 4x2 � 4xy+2y

on the closed region R bounded by y = x
2 and y = 4.
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Constrained Optimization

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a constraint, g(x, y) = c.

Example 77. A new hiking trail has been constructed on the hill with height

h(x, y) = 4� 1

4
x
2 � 1

4
y
2, above the points y = �0.5x2 + 3 in the xy-plane. What is

the highest point on the hill on this path?

Objective function:

Constraint equation:

https://tinyurl.com/2551-lagrange
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Method of Lagrange Multipliers: To find the maximum and minimum values

attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points

where rf(x, y, z) = �rg(x, y, z) and g(x, y, z) = c and compute the value of f at

these points.

If we have more than one constraint g(x, y, z) = c1, h(x, y, z) = c2, then find all points

where rf(x, y, z) = �rg(x, y, z) + µrh(x, y, z) and g(x, y, z) = c1, h(x, y, z) = c2.

Example 78. Find the points on the surface z
2 = xy + 4 that are closest to the

origin.


