§14.5 Directional Derivatives & Gradient Vectors

Example 61. Recall that if z = f(x, y), then f_x represents the rate of change of z in the x-direction and f_y represents the rate of change of z in the y-direction. What about other directions?

Let's go back to our hill example again, $h(x,y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$. How could we figure out the rate of change of our height from the point (2, 1) if we move in the direction $\langle -1, 1 \rangle$?

Definition 62. The ______ of $f : \mathbb{R}^n \to \mathbb{R}$ at the point **p**

in the direction of a unit vector ${\bf u}$ is

 $D_{\mathbf{u}}f(\mathbf{p}) =$

if this limit exists.

E.g. for our hill example above we have:

Note that $D_{\mathbf{i}}f = D_{\mathbf{j}}f = D_{\mathbf{k}}f =$

Definition 63. If $f : \mathbb{R}^n \to \mathbb{R}$, then the ______ of f at $\mathbf{p} \in \mathbb{R}^n$ is the vector function _____ (or _____) defined by

$$\nabla f(\mathbf{p}) =$$

Note: If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point **p**, then f has a directional derivative at **p** in the direction of any unit vector **u** and

$$D_{\mathbf{u}}f(\mathbf{p}) =$$

Example 64. *You try it!* Find the gradient vector and the directional derivative of each function at the given point **p** in the direction of the given vector **u**.

a)
$$f(x,y) = \ln(x^2 + y^2), \mathbf{p} = (-1,1), \mathbf{u} = \left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$$

b) $g(x, y, z) = x^2 + 4xy^2 + z^2$, $\mathbf{p} = (1, 2, 1)$, \mathbf{u} the unit vector in the direction of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

Example 65. If $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, the contour map is given below. Find and draw ∇h on the diagram at the points $(2, 0), (0, 4), \text{ and } (-\sqrt{2}, -\sqrt{2})$. At the point $(2, 0), \text{ compute } D_{\mathbf{u}}h$ for the vectors $\mathbf{u}_1 = \mathbf{i}, \mathbf{u}_2 = \mathbf{j}, \mathbf{u}_3 = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$.

Note that the gradient vector ∇f is ______ to the level curves of the function _____.

Similarly, for f(x, y, z), $\nabla f(a, b, c)$ is _____

Example 66. You try it! Sketch the curve $x^2 + y^2 = 4$ together with (a) the vector $\nabla f \mid_P$ and (b) the tangent line at $P(\sqrt{2}, \sqrt{2})$. Be sure to label the tangent line with the equation which defines it.

•

① Share

ChatGPT ~

The LaTeX symbol \nabla renders as:

 ∇

It is called **"nabla"** or the **del operator**, and it is used primarily in vector calculus. It represents the vector differential operator:

$$abla = \left[rac{\partial}{\partial x_1}, rac{\partial}{\partial x_2}, \dots, rac{\partial}{\partial x_n}
ight]$$

Common Uses:

• **Gradient** of a scalar function *f*:

$$abla f = \left[rac{\partial f}{\partial x_1}, rac{\partial f}{\partial x_2}, \ldots
ight]$$

• **Divergence** of a vector field \vec{F} :

$$abla \cdot ec{F}$$

• **Curl** of a vector field \vec{F} :

• Laplacian of a scalar field f:

$$abla^2 f =
abla \cdot
abla f$$

So in summary, \nabla is a compact and powerful symbol in multivariable calculus, especially when working with fields and differential operators.

00770°

+	≵ Tools	Ŷ	••••
	ChatGPT can make mistakes. Check important info. See Cookie Preferences.		

§14.6 Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k. How can we find an equation of the tangent plane of S at $P(x_0, y_0, z_0)$?

Example 67. Find the equation of the tangent plane at the point (-2, 1, -1) to the surface given by

$$z = 4 - x^2 - y$$

Special case: if we have z = f(x, y) and a point (a, b, f(a, b)), the equation of the tangent plane is

This should look familiar: it's _____

§14.7 Optimization: Local & Global

Gradient: If f(x, y) is a function of two variables, we said $\nabla f(a, b)$ points in the direction of greatest change of f.

Back to the hill
$$h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$$

What should we expect to get if we compute $\nabla h(0,0)$? Why? What does the tangent plane to z = h(x,y) at (0,0,4) look like?

Definition 68. Let f(x, y) be defined on a region containing the point (a, b). We say

- f(a, b) is a ______ value of f if f(a, b) _____ f(x, y) for all domain points (x, y) in a disk centered at (a, b)
- f(a,b) is a ______ value of f if f(a,b) _____ f(x,y) for all domain points (x,y) in a disk centered at (a,b)

In \mathbb{R}^3 , another interesting thing can happen. Let's look at $z = x^2 - y^2$ (a hyperbolic paraboloid!) near (0,0).

This is called a _____

Notice that in all of these examples, we have a horizontal tangent plane at the point in question, i.e.

Definition 69. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) =______ or where Df(a, b) ______

is called a _____ of f.

Example 70. Find the critical points of the function

$$f(x,y) = x^3 + y^3 - 3xy.$$

Example 71. You try it! Determine which of the functions below have a critical point at (0,0).

a)
$$f(x, y) = 3x + y^3 + 2y^2$$

$$b)g(x,y) = \cos(x) + \sin(x)$$

c)
$$h(x,y) = \frac{4}{x^2 + y^2}$$

$$\mathbf{d})k(x,y) = x^2 + y^2$$

To classify critical points, we turn to the **second derivative test** and the **Hessian matrix**. The **Hessian matrix** of f(x, y) at (a, b) is

$$Hf(a,b) =$$

Theorem 72 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and f has continuous second partial derivatives. Then we have:

- If det(Hf(a, b)) > 0 and $f_{xx}(a, b) > 0$, f(a, b) is a local minimum
- If det(Hf(a, b)) > 0 and $f_{xx}(a, b) < 0$, f(a, b) is a local maximum
- If det(Hf(a, b)) < 0, f has a saddle point at (a, b)
- If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at \mathbf{p} then

- If all eigenvalues of Hf(p) are positive, f is concave up in every direction from p and so has a local minimum at p.
- If all eigenvalues of $Hf(\mathbf{p})$ are negative, f is concave down in every direction from \mathbf{p} and so has a local maximum at \mathbf{p} .
- If some eigenvalues of $Hf(\mathbf{p})$ are positive and some are negative, f is concave up in some directions from \mathbf{p} and concave down in others, so has neither a local minimum or maximum at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are positive or zero, f may have either a local minimum or neither at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are negative or zero, f may have either a local maximum or neither at \mathbf{p} .

Example 73. Classify the critical points of $f(x, y) = x^3 + y^3 - 3xy$ from Example 70.

Two Local Maxima, No Local Minimum: The function $g(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2 + 2$ has two critical points, at (-1, 0) and (1, 2). Both are local maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have $f(a, b) \ge f(x, y)$ for all (x, y) in the domain of f. A global minimum is defined similarly.

Theorem 74. On a closed \mathcal{E} bounded domain, any continuous function f(x, y) attains a global minimum \mathcal{E} maximum.

Closed:

Bounded:

Strategy for finding global min/max of f(x,y) on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 75. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4.

§14.8 Optimization: Global & Constrained, Lagrange Multipliers

Strategy for finding global min/max of $f(\boldsymbol{x},\boldsymbol{y})$ on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 76. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4.

Constrained Optimization

Goal: Maximize or minimize f(x, y) or f(x, y, z) subject to a *constraint*, g(x, y) = c.

Example 77. A new hiking trail has been constructed on the hill with height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$, above the points $y = -0.5x^2 + 3$ in the *xy*-plane. What is the highest point on the hill on this path?

Objective function:

Constraint equation:

Method of Lagrange Multipliers: To find the maximum and minimum values attained by a function f(x, y, z) subject to a constraint g(x, y, z) = c, find all points where $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and g(x, y, z) = c and compute the value of f at these points.

If we have more than one constraint $g(x, y, z) = c_1$, $h(x, y, z) = c_2$, then find all points where $\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$ and $g(x, y, z) = c_1$, $h(x, y, z) = c_2$.

Example 78. Find the points on the surface $z^2 = xy + 4$ that are closest to the origin.