§15.1 Double Integrals, Iterated Integrals, Change of Order

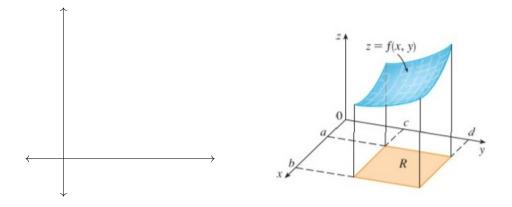
Recall: Riemann sum and the definite integral from single-variable calculus.

Double Integrals

Volumes and Double integrals Let R be the closed rectangle defined below:

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

Let f(x, y) be a function defined on R such that $f(x, y) \ge 0$. Let S be the solid that lies above R and under the graph f.



Question: How can we estimate the volume of S?

Definition 79. The ______ of f(x, y) over a rectangle R is

$$\iint_R f(x,y) \ dA = \lim_{|P| \to 0} \sum_{k=1}^n f(x_k, y_k) \Delta A_k$$

if this limit exists.

Question: How can we compute a double integral?

Answer:

Let f(x, y) = 2xy and lets integrate over the rectangle $R = [1, 3] \times [0, 4]$.

We want to compute $\int_1^3 \int_0^4 f(x, y) \, dy \, dx$, but lets consider the slice at x = 2.

What does $\int_0^4 f(2, y) \, dy$ represent here?

In general, if f(x, y) is integrable over $R = [a, b] \times [c, d]$, then $\int_c^d f(2, y) \, dy$ represents:

What about $\int_{c}^{d} f(x, y) dy$?

Let $A(x) = \int_{c}^{d} f(x, y) dy$. Then,

$$= \int_{a}^{b} A(x) dx =$$

This is called an _____.

Example 80. Evaluate $\int_1^2 \int_3^4 6x^2y \, dy \, dx$.

Theorem 81 (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 82. You try it! Integrate:

a)
$$\int_{0}^{2} \int_{-1}^{1} x - y \, dy \, dx$$
 easy

b)
$$\int_0^1 \int_0^1 \frac{y}{1+xy} \, dx \, dy$$
 medium

c)
$$\int_{1}^{4} \int_{1}^{e} \frac{\ln x}{xy} dx dy$$
 HARD!

Example 83. Compute $\iint_R x e^{e^{e^y}} dA$, where R is the rectangle $[-1,1] \times [0,4]$.

Hint: Fubini's Theorem.

§15.2 Double Integrals on General Regions

Question: What if the region R we wish to integrate over is not a rectangle?

Answer: Repeat same procedure - it will work if the boundary of R is smooth and f is continuous.

Example 84. Compute the volume of the solid whose base is the triangle with vertices (0,0), (0,1), (1,0) in the *xy*-plane and whose top is z = 2 - x - y.

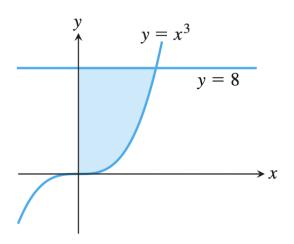
Vertically simple:

Horizontally simple:

Example 85. Write the two iterated integrals for $\iint_R 1 \, dA$ for the region R which is bounded by $y = \sqrt{x}, y = 0$, and x = 9.

Example 86. Set up an iterated integral to evaluate the double integral $\iint_R 6x^2y \ dA$, where R is the region bounded by x = 0, x = 1, y = 2, and y = x.

Example 87. You try it! Write the two iterated integrals for $\iint_R 1 \, dA$ for the region R which is bounded by x = 0, y = 8, and $y = x^3$.



Example 88. Sketch the region of integration for the integral

$$\int_0^1 \int_{4x}^4 f(x,y) \, dy \, dx.$$

Then write an equivalent iterated integral in the order dx dy.

§15.3 Area & Average Value

Two other applications of double integrals are computing the area of a region in the plane and finding the average value of a function over some domain.

Area: If R is a region bounded by smooth curves, then

 $\operatorname{Area}(R) = _$

Example 89. Find the area of the region R bounded by $y = \sqrt{x}$, y = 0, and x = 9.

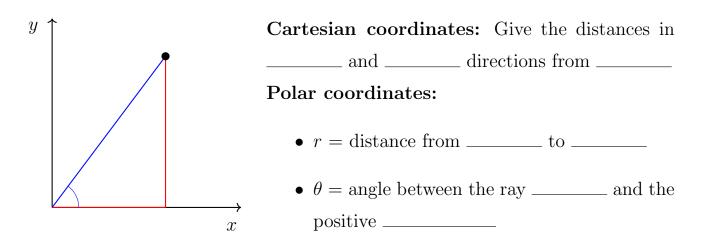
Average Value: The average value of f(x, y) on a region R contained in \mathbb{R}^2 is

 $f_{avg} =$ _____

Example 90. Find the average temperature on the region R in the previous example if the temperature at each point is given by $T(x, y) = 4xy^2$.

§15.4 Double Integrals in Polar Coordinates

Review of Polar Coordinates



We can use trigonometry to go back and forth.

Polar to Cartesian:

 $x = r\cos(\theta)$ $y = r\sin(\theta)$

Cartesian to Polar:

$$r^2 = x^2 + y^2 \qquad \tan(\theta) = \frac{y}{x}$$

Example 91. a) Find a set of polar coordinates for the point (x, y) = (1, 1).

b)Graph the set of points (x, y) that satisfy the equation r = 2 and the set of points that satisfy the equation $\theta = \pi/4$ in the *xy*-plane.

c) Write the function $f(x,y) = \sqrt{x^2 + y^2}$ in polar coordinates.

d) You try it! Write a Cartesian equation describing the points that satisfy $r = 2\sin(\theta)$.

Goal: Given a region R in the xy-plane described in polar coordinates and a function $f(r, \theta)$ on R, compute $\iint_R f(r, \theta) dA$.

Example 92. Compute the area of the disk of radius 5 centered at (0,0).

Remember: In polar coordinates, the area form dA =_____

Example 93. Compute $\iint_D e^{-(x^2+y^2)} dA$ on the washer-shaped region $1 \le x^2 + y^2 \le 4$.

Example 94. Compute the area of the smaller region bounded by the circle $x^2 + (y-1)^2 = 1$ and the line y = x.

Example 95. You try it! Write an integral for the volume under z = x on the region between the cardioid $r = 1 + \cos(\theta)$ and the circle r = 1, where $x \ge 0$.

