§16.1 Line Integrals of Scalar Functions

Chapter 16: Vector Calculus

Goals:

- Extend ______ integrals to ______ objects living in higherdimensional space
- Extend the _____ in new ways

We will use tools from everything we have covered so far to do this: parameterizations, derivatives and gradients, and multiple integrals. **Example 121.** Suppose we build a wall whose base is the straight line from (0,0) to (1,1) in the *xy*-plane and whose height at each point is given by $h(x,y) = 2x + y^2$ meters. What is the area of this wall?

Definition 122. The **line integral** of a scalar function f(x, y) over a curve C in \mathbb{R}^2 is

$$\int_C f(x,y) \ ds =$$

What things can we compute with this?

- If f = 1:
- If $f = \delta$ is a density function:
- If f is a height:

Strategy for computing line integrals:

- 1. Parameterize the curve C with some $\mathbf{r}(t)$ for $a \leq t \leq b$
- 2. Compute $ds = \|\mathbf{r}'(t)\| dt$
- 3. Substitute: $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt$
- 4. Integrate

Example 123. You try it! Compute $\int_C 2x + y^2 ds$ along the curve C given by $\mathbf{r}(t) = 10t\mathbf{i} + 10t\mathbf{j}$ for $0 \le t \le \frac{1}{10}$.

Example 124. Compute $\int_C 2x + y^2 ds$ along the curve C pictured below.

Example 125. You try it! Let C be a curve parameterized by $\mathbf{r}(t)$ from $a \le t \le b$. Select all of the true statements below.

a) $\mathbf{r}(t+4)$ for $a \le t \le b$ is also a parameterization of C with the same orientation

b) $\mathbf{r}(2t)$ for $a/2 \le t \le b/2$ is also a parameterization of C with the same orientation

c) $\mathbf{r}(-t)$ for $a \leq t \leq b$ is also a parameterization of C with the opposite orientation

d) $\mathbf{r}(-t)$ for $-b \leq t \leq -a$ is also a parameterization of C with the opposite orientation

e) $\mathbf{r}(b-t)$ for $0 \le t \le b-a$ is also a parameterization of C with the opposite orientation

Example 126. Find a parameterization of the curve C that consists of the portion of the curve $y = x^2 + 1$ from (2,5) to (-1,2) and use it to write the integral $\int_C x^2 + y^2 ds$ as an integral with respect to your parameter.

§16.2 Vector Fields & Vector Line Integrals

Vector Fields:

Definition 127. A vector field is a function $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ which associates a vector to every point in its domain.

Examples:

•	Graphically: For each point (a, b)
	in the domain of \mathbf{F} , draw the
•	vector $\mathbf{F}(a, b)$ with its base at
	(a,b).
•	
•	Tools: $CalcPlot3d$
	Field Play

leiu i lay

Idea: In many physical processes, we care about the total sum of the strength of that part of a field that lies either in the direction of a curve or perpendicular to that curve.

1. The _____ by a field \mathbf{F} on an object moving along a curve C is given by

Example 128. Work Done by a Field. Suppose we have a force field $\mathbf{F}(x, y) = \langle x, y \rangle$ N. Find the work done by \mathbf{F} on a moving object from (0,3) to (3,0) in a straight line, where x, y are measured in meters.

1. The ______ along a curve C of a velocity field \mathbf{F} for a fluid in motion is given by

When C is _____, this is called _____. C is called _____. C is called _____.

Example 129. Flow of a Velocity Field. Find the circulation of the velocity field $\mathbf{F}(x, y) = \langle -y, x \rangle$ cm/s around the unit circle, parameterized counterclockwise.

Example 130. You try it! What is the circulation of $\mathbf{F}(x, y) = \langle x, y \rangle$ around the unit circle, parameterized counterclockwise?

Strategy for computing tangential component line integrals e.g. work, flow, circulation integrals

- 1. Find a parameterization $\mathbf{r}(t)$, $a \leq t \leq b$ for the curve C.
- 2. Compute $\mathbf{r}'(t)$.
- 3. Substitute: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$
- 4. Integrate

Idea: _______ across a plane curve of a 2D-vector field measures the flow of the field across that curve (instead of along it).

We compute this with the integral

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds.$$

The sign of the flux integral tells us whether the net flow of the field across the curve is in the direction of ______ or in the opposite direction.

We can choose ${\bf n}$ to be either of

Strategy for computing normal component line integrals

e.g. flux integrals

- 1. Find a parameterization $\mathbf{r}(t)$, $a \leq t \leq b$ for the curve C.
- 2. Compute x'(t) and y'(t) and determine which normal to work with.
- 3. Substitute: $\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \pm \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle y'(t), -x'(t) \rangle \, dt$ (sign based on choice of normal)
- 4. Integrate

Example 131. Flux of a Velocity Field. Compute the flux of the velocity field $\mathbf{v} = \langle 3 + 2y - y^2/3, 0 \rangle$ cm/s across the quarter of the ellipse $\frac{x^2}{9} + \frac{y^2}{36} = 1$ in the first

quadrant, oriented away from the origin.

§16.3 Conservative Vector Fields & Fundamental Theorem

Definition 132. A vector field \mathbf{F} is **path independent** on an open region D if

 $_$ for all paths C in the region that have the same

endpoints.

When \mathbf{F} is path independent, we can use the simplest path from point A to point B to compute a line integral, and will often denote the line integral with points as bounds, e.g.

$$\int_{(0,1,2)}^{(3,1,1)} \mathbf{F} \cdot \mathbf{T} \, ds \qquad \text{or} \qquad \int_{(a,b)}^{(c,d)} \mathbf{F} \cdot d\mathbf{r}.$$

Example 133. If C is any closed path and \mathbf{F} is path independent on a region containing C, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

Question: Given F, how do we tell if it is path independent on a particular region?

For example, is $\mathbf{F}(x, y) = \langle x, y \rangle$ a path independent vector field on its domain?

Example 134. You try it! Last time, we saw that if C is the unit circle about the origin, oriented counterclockwise, then $\int_C \langle -y, x \rangle \cdot d\mathbf{r} = 2\pi$. From this, we can conclude:

§16.3

A different idea: Suppose **F** is a gradient vector field, i.e. $\mathbf{F} = \nabla f$ for some function of multiple variables f. f is called a ______ for **F**. In this case we also say that **F** is **conservative**.

Is $\mathbf{F}(x, y) = \langle x, y \rangle$ conservative?

Theorem 135 (Fundamental Theorem of Line Integrals). If C is a smooth curve from the point A to the point B in the domain of a function f with continuous gradient on C, then

$$\int_C \nabla f \cdot \mathbf{T} \, ds = f(B) - f(A)$$

Example 136. Compute $\int_C \langle x, y \rangle \cdot d\mathbf{r}$ for the curve *C* shown below from (-1, 1) to (3, 2).

It follows that every conservative field is path independent.

In fact, by carefully constructing a potential function, we can show the converse is also true: _____

This leads to a better way to test for path-independence and a way to apply the FToLI.

Curl Test for Conservative Fields: Let $\mathbf{F} = P\mathbf{i}+Q\mathbf{j}+R\mathbf{k}$ be a vector field defined on a simply-connected region. If curl $\mathbf{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = \langle 0, 0, 0 \rangle$, then \mathbf{F} is conservative.

- If **F** is a 2-d vector field, $\operatorname{curl} \mathbf{F} =$
- This is also called the **mixed-partials test**, because

Example 137. Evaluate $\int_C (10x^4 - 2xy^3) dx - 3x^2y^2 dy$ where *C* is the part of the curve $x^5 - 5x^2y^2 - 7x^2 = 0$ from (3, -2) to (3, 2).

