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§16.1 Line Integrals of Scalar Functions

Chapter 16: Vector Calculus

Goals:

• Extend integrals to objects living in higher-

dimensional space

• Extend the in new ways

We will use tools from everything we have covered so far to do this: parameteriza-

tions, derivatives and gradients, and multiple integrals.
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Example 121. Suppose we build a wall whose base is the straight line from (0, 0)

to (1, 1) in the xy-plane and whose height at each point is given by h(x, y) = 2x+y
2

meters. What is the area of this wall?

https://tinyurl.com/2551-wall-line-int
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Definition 122. The line integral of a scalar function f(x, y) over a curve C in

R2 is
Z

C
f(x, y) ds =

What things can we compute with this?

• If f = 1:

• If f = � is a density function:

• If f is a height:
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Strategy for computing line integrals:

1. Parameterize the curve C with some r(t) for a  t  b

2. Compute ds = kr0(t)k dt

3. Substitute:
R
C f(x, y, z) ds =

R b
a f(r(t))kr

0(t)k dt

4. Integrate

Example 123. You try it! Compute
R
C 2x + y

2
ds along the curve C given by

r(t) = 10ti+ 10tj for 0  t  1
10 .
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Example 124. Compute
R
C 2x+ y

2
ds along the curve C pictured below.
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Example 125. You try it! Let C be a curve parameterized by r(t) from a  t  b.

Select all of the true statements below.

a)r(t+ 4) for a  t  b is also a parameterization
of C with the same orientation

b)r(2t) for a/2  t  b/2 is also a parameteriza-
tion of C with the same orientation

c) r(�t) for a  t  b is also a parameterization of
C with the opposite orientation

d)r(�t) for �b  t  �a is also a parameteriza-
tion of C with the opposite orientation

e) r(b� t) for 0  t  b� a is also a parameteriza-
tion of C with the opposite orientation
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Example 126. Find a parameterization of the curve C that consists of the portion

of the curve y = x
2 + 1 from (2, 5) to (�1, 2) and use it to write the integral

R
C x

2 + y
2
ds as an integral with respect to your parameter.
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§16.2 Vector Fields & Vector Line Integrals

Vector Fields:

Definition 127. A vector field is a function F : Rn ! Rn which associates a vector

to every point in its domain.

Examples:
•

•

•

•

•

Graphically: For each point (a, b)
in the domain of F, draw the
vector F(a, b) with its base at
(a, b).

Tools: CalcPlot3d
Field Play

https://c3d.libretexts.org/CalcPlot3D/index.html
https://anvaka.github.io/fieldplay/?cx=0.001200000000000312&cy=0&w=8.542200000000001&h=8.542200000000001&dt=0.01&fo=0.998&dp=0.009&cm=1


§16.2 Page 134

Idea: In many physical processes, we care about the total sum of the strength of

that part of a field that lies either in the direction of a curve or perpendicular to

that curve.

1. The by a field F on an object moving along a curve

C is given by

Example 128. Work Done by a Field. Suppose we have a force field F(x, y) =

hx, yi N. Find the work done by F on a moving object from (0, 3) to (3, 0) in a

straight line, where x, y are measured in meters.
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1. The along a curve C of a velocity field F for a fluid

in motion is given by

When C is , this is called . C is called

if it does not intersect itself.

Example 129. Flow of a Velocity Field. Find the circulation of the velocity

field F(x, y) = h�y, xi cm/s around the unit circle, parameterized counterclockwise.
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Example 130. You try it! What is the circulation of F(x, y) = hx, yi around the

unit circle, parameterized counterclockwise?

Strategy for computing tangential component line integrals

e.g. work, flow, circulation integrals

1. Find a parameterization r(t), a  t  b for the curve C.

2. Compute r0(t).

3. Substitute:
R
C F ·T ds =

R
C F · dr =

R b
a F(r(t)) · r

0(t) dt

4. Integrate
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Idea: across a plane curve of a 2D-vector field measures the flow of

the field across that curve (instead of along it).

We compute this with the integral

Z

C
F · n ds.

The sign of the flux integral tells us whether the net flow of the field across the curve

is in the direction of or in the opposite direction.

We can choose n to be either of

Strategy for computing normal component line integrals

e.g. flux integrals

1. Find a parameterization r(t), a  t  b for the curve C.

2. Compute x
0(t) and y

0(t) and determine which normal to work with.

3. Substitute:
R
C F · n ds = ±

R b
a F(r(t)) · hy

0(t),�x
0(t)i dt (sign based on choice

of normal)

4. Integrate
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Example 131. Flux of a Velocity Field. Compute the flux of the velocity field

v = h3+ 2y� y
2
/3, 0i cm/s across the quarter of the ellipse

x
2

9
+

y
2

36
= 1 in the first

quadrant, oriented away from the origin.
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§16.3 Conservative Vector Fields & Fundamental
Theorem

Definition 132. A vector field F is path independent on an open region D if

for all paths C in the region that have the same

endpoints.

When F is path independent, we can use the simplest path from point A to point

B to compute a line integral, and will often denote the line integral with points as

bounds, e.g.
Z (3,1,1)

(0,1,2)
F ·T ds or

Z (c,d)

(a,b)
F · dr.

Example 133. If C is any closed path and F is path independent on a region

containing C, then
Z

C
F · dr =
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Question: Given F, how do we tell if it is path independent on a particular region?

For example, is F(x, y) = hx, yi a path independent vector field on its domain?

Example 134. You try it! Last time, we saw that if C is the unit circle about

the origin, oriented counterclockwise, then
R
Ch�y, xi · dr = 2⇡. From this, we can

conclude:
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A di↵erent idea: Suppose F is a gradient vector field, i.e. F = rf for some

function of multiple variables f . f is called a for F. In

this case we also say that F is conservative.

Is F(x, y) = hx, yi conservative?

Theorem 135 (Fundamental Theorem of Line Integrals). If C is a smooth curve

from the point A to the point B in the domain of a function f with continuous

gradient on C, then
Z

C
rf ·T ds = f(B)� f(A)
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Example 136. Compute
R
Chx, yi · dr for the curve C shown below from (�1, 1) to

(3, 2).
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It follows that every conservative field is path independent.

In fact, by carefully constructing a potential function, we can show the converse is

also true:

This leads to a better way to test for path-independence and a way to apply the

FToLI.

Curl Test for Conservative Fields: Let F = P i+Qj+Rk be a vector field defined

on a simply-connected region. If curlF = hRy �Qz, Pz �Rx, Qx �Pyi = h0, 0, 0i,
then F is conservative.

• If F is a 2-d vector field, curlF =

• This is also called the mixed-partials test, because
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Example 137. Evaluate
R
C(10x

4 � 2xy3) dx� 3x2y2 dy where C is the part of the

curve x
5 � 5x2y2 � 7x2 = 0 from (3,�2) to (3, 2).


