§16.4 Divergence, Curl, Green's Theorem

Useful notation: $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$

So if f(x, y, z) is a function of three variables, $\nabla f = \left\langle \frac{\partial}{\partial x}(f), \frac{\partial}{\partial y}(f), \frac{\partial}{\partial z}(f) \right\rangle$

If $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ is a vector field:

- $\nabla \cdot \mathbf{F} =$
- $\nabla \times \mathbf{F} =$

How do we measure the change of a vector field?

• If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$: we use $\nabla \times \mathbf{F} = \nabla \times \langle P, Q, 0 \rangle$

- 2. Divergence (in any \mathbb{R}^n)
 - Tells us _____
 - Measures _____
 - Is a _____
 - div $\mathbf{F} =$

Example 138. Let $\mathbf{F}(x, y) = \langle x, y \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.

Example 139. You try it! Let $\mathbf{F}(x, y) = \langle -y, x \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.

Question: How is this useful?

Answer: We can relate ______ inside a region to the behavior of the vector field on the boundary of the region.

Theorem 140 (Green's Theorem). Suppose C is a piecewise smooth, simple, closed curve enclosing on its left a region R in the plane with outward oriented unit normal **n**. If $\mathbf{F} = \langle P, Q \rangle$ has continuous partial derivatives around R, then

a) Circulation form:

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C P \, dx + Q \, dy = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA = \iint_R Q_x - P_y \, dA$$

b) Flux form:

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C P \, dy - Q \, dx = \iint_R (\nabla \cdot \mathbf{F}) \, dA = \iint_R P_x + Q_y \, dA$$

Example 141. Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = \langle -y^2, xy \rangle$ where *C* is the boundary of the square bounded by x = 0, x = 1, y = 0, and y = 1 oriented counterclockwise.

Example 142. Compute the flux out of the region R which is the portion of the annulus between the circles of radius 1 and 3 in the first octant for the vector field $\mathbf{F} = \langle \frac{1}{3}x^3, \frac{1}{3}y^3 \rangle$.

Example 143. Let *R* be the region bounded by the curve $\mathbf{r}(t) = \langle \sin(2t), \sin(t) \rangle$ for $0 \le t \le \pi$. Find the area of *R*, using Green's Theorem applied to the vector field $\mathbf{F} = \frac{1}{2} \langle x, y \rangle$.

Note: This is the idea behind the operation of the measuring instrument known as a planimeter.

§16.5, 16.6 Surfaces & Surface Integrals

Different ways to think about curves and surfaces:

	Curves	Surfaces
Explicit:	y = f(x)	z = f(x, y)
Implicit:	F(x,y) = 0	F(x, y, z) = 0
Parametric Form:	$\mathbf{r}(t) = \langle x(t), y(t) \rangle$	

Example 144. Give parameteric representations for the surfaces below.

a)
$$x = y^2 + \frac{1}{2}z^2 - 2$$

b) The portion of the surface $x = y^2 + \frac{1}{2}z^2 - 2$ which lies behind the yz-plane.

c) $x^2 + y^2 + z^2 = 9$

d)
$$x^2 + y^2 = 25$$

What can we do with this?

If our parameterization is **smooth** ($\mathbf{r}_u, \mathbf{r}_v$ not parallel in the domain), then:

- $\mathbf{r}_u \times \mathbf{r}_v$ is _____
- A rectangle of size $\Delta u \times \Delta v$ in the *uv*-domain is mapped to a rectangle of size ______ on the surface in \mathbb{R}^3 .

• Thus, Area(S) =

Example 145. You try it! Find the area of the portion of the cylinder $x^2 + y^2 = 25$ between z = 0 and z = 1.

Example 146. Suppose the density of a thin plate S in the shape of the portion of the plane x + y + z = 1 in the first octant is $\delta(x, y, z) = 6xy$. Find the mass of the plate.

§16.6, 16.7 Flux Surface Integrals, Stokes' Theorem

Goal: If **F** is a vector field in \mathbb{R}^3 , find the total flux of **F** through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is in the direction of ______

If $\mathbf{r}(u, v)$ is a smooth parameterization of S with domain R, we have

flux of **F** through
$$S = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, d\sigma = \iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA.$$

Example 147. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $\|\mathbf{r}_u \times \mathbf{r}_v\|$ when z = f(x, y) so that S is the graph of a scalar function with domain in \mathbb{R}^2 .

Example 148. Find $\mathbf{r}_u \times \mathbf{r}_v$ and $||\mathbf{r}_u \times \mathbf{r}_v||$ when S is a portion of a sphere of radius $\rho = a$, for some fixed constant a, using the standard spherical coordinates for your parametrization.

 $G(x, y, z) = x^2$, $S: x^2 + y^2 + z^2 = 1$

Example 151. You try it! Suppose S is a smooth surface in \mathbb{R}^3 and **F** is a vector field in \mathbb{R}^3 . True or False: If $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma > 0$, then the angle between **F** and **n** is acute at all points on S.

Example 152. You try it! Based on the plot of the vector field \mathbf{F} and the surface S below, oriented in the positive y-direction, is the flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ positive, negative, or zero?

Recall: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field, we defined its:

1. divergence: $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$

2. curl:
$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Example 153. You try it! Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field in \mathbb{R}^3 with continuous partial derivatives. Compute the divergence of the curl of \mathbf{F} , i.e. $\nabla \cdot (\nabla \times \mathbf{F})$.

Theorem 154 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds$$

- If S is a region R in the xy-plane, then we get:
- An oriented surface is one where _____
- S and C are oriented compatibly if:

Example 155. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by calculating the flux across the interior of C.

$$\mathbf{F} = \langle y, xz, x^2 \rangle$$

C: boundary of x + y + z + 1 in first octant,

oriented counter-clockwise from above.

Example 156. You try it! Use Stokes' Theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ the flux of \mathbf{F} across S by calculating the circulation line integral around the boundary curve C of S.

$$\mathbf{F} = \langle 2z, 3x, 5y \rangle$$

$$S : \mathbf{r}(r, \theta) = \langle r \cos \theta, r \sin \theta, (4 - r^2) \rangle$$

$$R : r \in [0, 2], \ \theta \in [0, 2\pi]$$