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§16.4 Divergence, Curl, Green’s Theorem

Useful notation: r =

⌧
@

@x
,
@

@y
,
@

@z

�

So if f(x, y, z) is a function of three variables, rf =

⌧
@

@x
(f),

@

@y
(f),

@

@z
(f)

�

If F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k is a vector field:

• r · F =

• r⇥ F =
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How do we measure the change of a vector field?

1. Curl (in R3)

• Tells us

• Measures

• Is a

• Direction gives

• Magnitude gives

• curlF =

• If F = P i+Qj: we use r⇥ F = r⇥ hP,Q, 0i

2. Divergence (in any Rn)

• Tells us

• Measures

• Is a

• divF =
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Example 138. Let F(x, y) = hx, yi. Based on the visualization of this vector field

below, what can we say about the sign (+,-,0) of the divergence and scalar curl of

this vector field? Verify by computing the divergence and scalar curl.

Example 139. You try it! Let F(x, y) = h�y, xi. Based on the visualization of

this vector field below, what can we say about the sign (+,-,0) of the divergence and

scalar curl of this vector field? Verify by computing the divergence and scalar curl.
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Question: How is this useful?

Answer: We can relate inside a re-

gion to the behavior of the vector field on the boundary of the region.

Theorem 140 (Green’s Theorem). Suppose C is a piecewise smooth, simple, closed

curve enclosing on its left a region R in the plane with outward oriented unit normal

n. If F = hP,Qi has continuous partial derivatives around R, then

a)Circulation form:

Z

C
F ·T ds =

Z

C
P dx+Q dy =

ZZ

R
(r⇥ F) · k dA =

ZZ

R
Qx � Py dA

b)Flux form:

Z

C
F · n ds =

Z

C
P dy �Q dx =

ZZ

R
(r · F) dA =

ZZ

R
Px +Qy dA
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Example 141. Evaluate the line integral
R
C F · T ds for the vector field F =

h�y
2
, xyi where C is the boundary of the square bounded by x = 0, x = 1, y = 0,

and y = 1 oriented counterclockwise.

Example 142. Compute the flux out of the region R which is the portion of the

annulus between the circles of radius 1 and 3 in the first octant for the vector field

F = h13x
3
,
1
3y

3i.
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Example 143. Let R be the region bounded by the curve r(t) = hsin(2t), sin(t)i for
0  t  ⇡. Find the area of R, using Green’s Theorem applied to the vector field

F = 1
2hx, yi.

Note: This is the idea behind the operation of the measuring instrument known as

a planimeter.

https://en.wikipedia.org/wiki/Planimeter
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§16.5, 16.6 Surfaces & Surface Integrals

Di↵erent ways to think about curves and surfaces:

Curves Surfaces
Explicit: y = f(x) z = f(x, y)

Implicit: F (x, y) = 0 F (x, y, z) = 0

Parametric Form: r(t) = hx(t), y(t)i
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Example 144. Give parameteric representations for the surfaces below.

a)x = y
2 + 1

2z
2 � 2

b)The portion of the surface x = y
2 + 1

2z
2 � 2 which lies behind the yz-plane.

c) x2 + y
2 + z

2 = 9

d)x2 + y
2 = 25
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What can we do with this?

If our parameterization is smooth (ru, rv not parallel in the domain), then:

• ru ⇥ rv is

• A rectangle of size �u⇥�v in the uv-domain is mapped to a rectangle of size

on the surface in R3.

• Thus, Area(S) =

Example 145. You try it! Find the area of the portion of the cylinder x2+y
2 = 25

between z = 0 and z = 1.
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Example 146. Suppose the density of a thin plate S in the shape of the portion of

the plane x+ y + z = 1 in the first octant is �(x, y, z) = 6xy. Find the mass of the

plate.
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§16.6, 16.7 Flux Surface Integrals, Stokes’
Theorem

Goal: If F is a vector field in R3, find the total flux of F through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is

in the direction of

If r(u, v) is a smooth parameterization of S with domain R, we have

flux of F through S =

ZZ

S
(F · n) d� =

ZZ

R
F(r(u, v)) · (ru ⇥ rv) dA.

Example 147. Find ru ⇥ rv and kru ⇥ rvk when z = f(x, y) so that S is the graph

of a scalar function with domain in R2.
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Example 148. Find ru⇥ rv and kru⇥ rvk when S is a portion of a sphere of radius

⇢ = a, for some fixed constant a, using the standard spherical coordinates for your

parametrization.
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Example 149. Find the flux of F = hx,�y, zi through the upper hemisphere of

x
2 + y

2 + z
2 = 4, oriented away from the origin.
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Example 150. You try it! Compute
RR

S G ·n d� the flux of G across the surface S.

G(x, y, z) = x
2
, S : x

2 + y
2 + z

2 = 1
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Example 151. You try it! Suppose S is a smooth surface in R3 and F is a vector

field in R3. True or False: If
RR

S F · n d� > 0, then the angle between F and n is

acute at all points on S.

Example 152. You try it! Based on the plot of the vector field F and the surface S

below, oriented in the positive y-direction, is the flux integral
RR

S F · n d� positive,

negative, or zero?

Recall: If F = P i+Qj+Rk is a vector field, we defined its:

1. divergence: r · F = Px +Qy +Rz

2. curl: r⇥ F =

��������

i j k
@

@x

@

@y

@

@z

P Q R

��������
= hRy �Qz, Pz �Rx, Qx � Pyi
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Example 153. You try it! Suppose F = P i + Qj + Rk is a vector field in R3

with continuous partial derivatives. Compute the divergence of the curl of F, i.e.

r · (r⇥ F).

Theorem 154 (Stokes’ Theorem). Let S be a smooth oriented surface and C be

its compatibly oriented boundary. Let F be a vector field with continuous partial

derivatives. Then ZZ

S
(r⇥ F) · n d� =

Z

C
F ·T ds.

• If S is a region R in the xy-plane, then we get:

• An oriented surface is one where

• S and C are oriented compatibly if:
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Example 155. Use Stokes’ Theorem to evaluate
R
C F · dr by calculating the flux

across the interior of C.

F = hy, xz, x2i

C : boundary of x+ y + z + 1 in first octant,

oriented counter-clockwise from above.
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Example 156. You try it! Use Stokes’ Theorem to evaluate
RR

S F · n d� the flux

of F across S by calculating the circulation line integral around the boundary curve

C of S.

F = h2z, 3x, 5yi

S :r(r, ✓) = hr cos ✓, r sin ✓, (4� r
2)i

R :r 2 [0, 2], ✓ 2 [0, 2⇡]


