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16.4 Divergence, Curl, Green’s Theorem
8 g ; ;

. o 0 0
Useful notation: V = <%, a—y, $>

So if f(x,y,2) is a function of three variables, V f = <—x(f), —(f), —(f)>

If F(x,y,2) = P(z,y,2)i+ Q(z,y, 2)j + R(z,y, 2)k is a vector field:

o VXF =
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How do we measure the change of a vector field?

1. Curl (in R?)

o Tells us

e Measures

e [sa

e Direction gives

e Magnitude gives
o curlF =

o f F=Pi+Qj weuse VXF =V x(PQ,0)

2. Divergence (in any R")

o Tells us

e Measures

o [sa

o divF =



§16.4 Page 147

Example 138. Let F(z,y) = (x,y). Based on the visualization of this vector field
below, what can we say about the sign (+,-,0) of the divergence and scalar curl of

this vector field? Verify by computing the divergence and scalar curl.
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Example 139. You try it! Let F(z,y) = (—y,z). Based on the visualization of
this vector field below, what can we say about the sign (+,-,0) of the divergence and

scalar curl of this vector field? Verify by computing the divergence and scalar curl.
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Question: How is this useful?

Answer: We can relate inside a re-

gion to the behavior of the vector field on the boundary of the region.

Theorem 140 (Green’s Theorem). Suppose C' is a piecewise smooth, simple, closed
curve enclosing on its left a region R in the plane with outward oriented unit normal

n. If F = (P,Q) has continuous partial derivatives around R, then

a) Circulation form:

/OF-Tds:/Cde—l—Qdy://R(VxF)-de://RQx—PydA

b) Fluzx form:

/CF.nds:/Cde—de://R(v-F) dA://RPx+deA
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Example 141. Evaluate the line integral fCF - T ds for the vector field F =
(—y?, zy) where C is the boundary of the square bounded by z = 0,z = 1,y = 0,

and y = 1 oriented counterclockwise.

Example 142. Compute the flux out of the region R which is the portion of the
annulus between the circles of radius 1 and 3 in the first octant for the vector field

F = (32, 39°).
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Example 143. Let R be the region bounded by the curve r(t) = (sin(2t), sin(t)) for
0 <t < 7. Find the area of R, using Green’s Theorem applied to the vector field

F = 3(z,y).

Note: This is the idea behind the operation of the measuring instrument known as

a planimeter.


https://en.wikipedia.org/wiki/Planimeter
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§16.5, 16.6 Surfaces & Surface Integrals

Different ways to think about curves and surfaces:

Curves Surfaces
Explicit: y = f(z) z = f(z,y)
Implicit: F(z,y) =0 F(z,y,2) =0

Parametric Form: r(t) = (x(t),y(t))
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Example 144. Give parameteric representations for the surfaces below.

a)r =yt 4 32° — 2

b) The portion of the surface x = y? + £z* — 2 which lies behind the yz-plane.

)z’ +y* 427 =9

d)a? +y? =25
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What can we do with this?

If our parameterization is smooth (r,, r, not parallel in the domain), then:

er, Xr,Is

e A rectangle of size Au x Av in the uv-domain is mapped to a rectangle of size

on the surface in R3.

e Thus, Area(S) =

Example 145. You try it! Find the area of the portion of the cylinder 22 + y? = 25

between z = 0 and z = 1.
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Example 146. Suppose the density of a thin plate S in the shape of the portion of
the plane z + y + z = 1 in the first octant is d(x,y, z) = 6xy. Find the mass of the

plate.
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§16.6, 16.7 Flux Surface Integrals, Stokes’
Theorem

Goal: If F is a vector field in R?, find the total flux of F through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is

in the direction of

If r(u,v) is a smooth parameterization of S with domain R, we have

flux of F through S = //S(F ‘n) do = //RF(I‘(U, v)) - (ry X r,) dA.

Example 147. Find r, X r, and ||r, X r,|| when z = f(x,y) so that S is the graph

of a scalar function with domain in R2.
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Example 148. Find r, x r, and ||r, X r,|| when S is a portion of a sphere of radius
p = a, for some fixed constant a, using the standard spherical coordinates for your

parametrization.
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Example 149. Find the flux of F = (z, —y, z) through the upper hemisphere of

2?4+ y? + 2% = 4, oriented away from the origin.
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Example 150. You try it/ Compute [[,G-ndo the flux of G across the surface S.

Gz,y,2) =2 S:2°+y*+22=1
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Example 151. You try it! Suppose S is a smooth surface in R? and F is a vector
field in R3. True or False: If ffs F -n do > 0, then the angle between F and n is

acute at all points on S.

Example 152. You try it/ Based on the plot of the vector field F and the surface S
below, oriented in the positive y-direction, is the flux integral f f ¢ F -1 do positive,

negative, or zero?
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Recall: If F = Pi+ Qj + Rk is a vector field, we defined its:

1. divergence: V-F = P, +Q, + R,

2. curl: VxF = =(R,—Q.,P.— R,,Q, — P,)

oY o=

i
9 9
oxr Oy
P Q



§16.6, 16.7 Page 160

Example 153. You try it! Suppose F = Pi+ Qj + Rk is a vector field in R3
with continuous partial derivatives. Compute the divergence of the curl of F, i.e.

V- (VxF).

Theorem 154 (Stokes’ Theorem). Let S be a smooth oriented surface and C' be

its compatibly oriented boundary. Let F be a vector field with continuous partial

//S(VXF)-ndJ:/CF-Tds.

derivatives. Then

e If S is a region R in the zy-plane, then we get:

e An oriented surface is one where

e S and C are oriented compatibly if:
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Example 155. Use Stokes” Theorem to evaluate fCF - dr by calculating the flux

across the interior of C.

F = (y,2z,2%)
C : boundary of x 4+ y + 2 + 1 in first octant,

oriented counter-clockwise from above.
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Example 156. You try it/ Use Stokes’ Theorem to evaluate [[F -n do the flux

of F across S by calculating the circulation line integral around the boundary curve

Cof S.

F = (22, 3z, 5y)
S :x(r,0) = (rcosf,rsind, (4 —r?))
R:re|0,2], 0 €0, 27]



