MATH 2551-GT-E– Multivariable Calculus

You have 15 minutes to take the quiz. No phones, notes, or use aids of any kind is permitted.

1. (10 points) [Lagrange Multipliers] Find the maximum and minimum value of f(x, y) subject to the constraint g(x, y) = k using the method of Lagrange multipliers. [AJN]

 $f(x, y) = x^2 y$, subject to x + y = 3.

 $f(x,y) = x^2y$, subject to g(x,y) = x+y=3. Set up $\nabla f = \langle 2xy, x^2 \rangle$ $\nabla g = \langle 1, 1 \rangle$

10

Solve
$$\int 2xy = \lambda$$

 $\begin{pmatrix} 2 \\ 2xy = \lambda \end{pmatrix}$
 $\begin{pmatrix} 2 \\ 3x^2 = \lambda \end{pmatrix}$
 $\begin{pmatrix} 2 \\ x+y = 3 \end{pmatrix}$
 $\begin{pmatrix} x+y = 3 \end{pmatrix}$
 $\begin{pmatrix}$

In Case I:
$$x=0, y=3, \lambda=0$$
 get (0,3)
In Case II: $\int O 4y^2 = \lambda \implies y=1 \notin \lambda=4$
[2] $3y=3$ get (2,1).

MAX of f is 4 at
$$(2,1)$$

MIN of f is 0 at $(0,3)$
 $Evaluate (0,3)$
 $(0,3)$ $O \in MN$
 $(2,1)$ 4 $emax$