Practice Exam 1

1. Valid? Prove or disprove.

$$
\text { (a) } \begin{array}{llc}
& \\
p \rightarrow q \\
\frac{q \vee r}{r \rightarrow(\neg q)} & \text { (b) } & (\neg r) \vee(\neg q) \tag{b}\\
& & \frac{r}{(\neg p)}
\end{array}
$$

2. Valid? Prove or disprove.

If I work hard, then I earn lots of money.
If I don't pay high taxes, then I don't work hard.
If I work hard, then I pay high taxes.
3. True or False questions.
(i) If $p \wedge q$ is true, then $p \vee q$ is true.
(ii) If $p \rightarrow q$ is true and $q \rightarrow p$ is true, then p is logically equivalent to q.
(iii) If \mathcal{A} is a tautology and \mathcal{B} is a contradiction, then $\mathcal{A} \wedge(\neg \mathcal{B})$ is a tautology.
(iv) If $\mathcal{A} \Longleftrightarrow \mathcal{B}$ and \mathcal{C} is any statement, then $(\mathcal{A} \rightarrow \mathcal{C}) \Longleftrightarrow(\mathcal{B} \rightarrow \mathcal{C})$.
(v) If the premises of an argument are all contradictions, then the argument is valid.
(vi) If there exists a premise of an argument that is a contradiction, then the argument is valid.
(vii) If an argument is valid, then some premise of the argument is a contradiction.
(viii) The statement $(p \rightarrow q) \leftrightarrow(q \wedge(r \rightarrow s)$ evaluates to TRUE when all the atomic statements p, q, r, s are true.
(ix) If $f: A \rightarrow B$ is a function and $|A|<|B|$ then f is one-to-one.
4. Let $A=\{1,2,3\}$ and $B=\{2,4,6,8\}$. Find $A \cap B, A \cup B$ and $(A \cap B) \times(A \cup B)$.
5. Let A and B be sets. Prove or give a counterexample: If $A \subseteq B$ and $A \subseteq B^{c}$, then $A=\emptyset$.
6. Let A, B, and C be sets. Prove or give a counterexample:

$$
\text { If } C \subseteq(A \cup B) \text {, then } C \subseteq A \text { or } C \subseteq B
$$

7. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove that if g is onto and f is onto then $g \circ f$ is onto. Is the converse true? Is the statement still true if we relax the assumption to only insist that g was onto? that f was onto?
