Practice Exam 1

1. Valid? Prove or disprove.

$$\begin{array}{ccc} p \rightarrow q & p \rightarrow q \\ (a) & \displaystyle \frac{q \lor r}{r \rightarrow (\neg q)} & (b) & \displaystyle \frac{(\neg r) \lor (\neg q)}{(\neg p)} \end{array} \end{array}$$

2. Valid? Prove or disprove.

If I work hard, then I earn lots of money. If I don't pay high taxes, then I don't work hard. If I work hard, then I pay high taxes.

- **3.** True or False questions.
 - (i) If $p \wedge q$ is true, then $p \vee q$ is true.
 - (ii) If $p \to q$ is true and $q \to p$ is true, then p is logically equivalent to q.
 - (iii) If \mathcal{A} is a tautology and \mathcal{B} is a contradiction, then $\mathcal{A} \wedge (\neg \mathcal{B})$ is a tautology.
 - (iv) If $\mathcal{A} \iff \mathcal{B}$ and \mathcal{C} is any statement, then $(\mathcal{A} \to \mathcal{C}) \iff (\mathcal{B} \to \mathcal{C})$.
 - (v) If the premises of an argument are all contradictions, then the argument is valid.
 - (vi) If there exists a premise of an argument that is a contradiction, then the argument is valid.
 - (vii) If an argument is valid, then some premise of the argument is a contradiction.
 - (viii) The statement $(p \to q) \leftrightarrow (q \land (r \to s))$ evaluates to TRUE when all the atomic statements p, q, r, s are true.
 - (ix) If $f : A \to B$ is a function and |A| < |B| then f is one-to-one.

4. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6, 8\}$. Find $A \cap B$, $A \cup B$ and $(A \cap B) \times (A \cup B)$.

5. Let A and B be sets. Prove or give a counterexample: If $A \subseteq B$ and $A \subseteq B^c$, then $A = \emptyset$.

6. Let A, B, and C be sets. Prove or give a counterexample:

If $C \subseteq (A \cup B)$, then $C \subseteq A$ or $C \subseteq B$.

7. Let $f : A \to B$ and $g : B \to C$ be functions. Prove that if g is onto and f is onto then $g \circ f$ is onto. Is the converse true? Is the statement still true if we relax the assumption to only insist that g was onto? that f was onto?