Math 2602

Finite and Linear Math

Quiz 10

For the problems below consider the following graph \mathcal{G} whose model is given below:

Determine if the graph is planar or not. If it is planar, give a planar model. If it is not planar, find a subgraph *H* and indicate whether it is homeomorphic to K₅ or K_{3,3}. (8 pts.) Solution: The following subgraph of *G* is homeomorphic to K_{3,3}. It is obtained by deleting the edge (g, a) from *G*.

2. Let \mathcal{H} be the subgraph of \mathcal{G} obtained by deleting the vertex g and the edge (g, a). Determine whether \mathcal{H} is Eulerian and/or Hamiltonian. Find a Eulerian circuit and/or a Hamiltonian cycle, if possible, or state that it is not possible. (8 pts.)

Solution: The graph is not Eulerian since not all its vertices are even. However, it is Hamiltonian. A Hamiltonian cycle is fhebadcf.

3. Find the chromatic number $\chi(\mathcal{G})$ and give a $\chi(\mathcal{G})$ -coloring of \mathcal{G} . (4 pts.)

Solution: The chromatic number is 3 (notice \mathcal{G} is not bipartite even though it is homeomorphic to $K_{3,3}$ plus an edge, that is, if the vertex h were missing it *would* be bipartite with chromatic number 2!). A 3-coloring is

color 1 vertices are	$\{e, a, c\}$
color 2 vertices are	$\{b,d,f,g\}$
color 3 vertices are	$\{h\}$