Quiz 1

1. Find an assignment to the atomic statements p, q, r such that the statement below is false.

$$
[(p \vee \neg r) \leftrightarrow(q \rightarrow r)] \vee r
$$

Solution: The statement is false if and only if r is false, q is true, and p is either true or false.
2. Prove that the argument below is valid.

$$
\begin{gathered}
p \vee(q \rightarrow r) \\
\neg q \rightarrow \neg r \\
\hline \neg p \rightarrow(q \leftrightarrow r)
\end{gathered}
$$

Solution: Suppose both premises are true. There are two cases to consider, the case where p is true and the case where p is false. If p is true, then the conclusion, which is an implication whose supposition is false, must be true. If p is false, then for the first premise to be true $q \rightarrow r$ must be true. But then since the second premise is equivalent to $r \rightarrow q$, we conclude that $q \leftrightarrow r$ is true in this case. Hence, the conclusion is true in this case as well.
3. True/false section. Circle one. No justification required.
(2 pts. each)
True or False. For every real number x there exists a natural number n such that $n>x$.
True or False. There exists non-empty sets A, B such that $A \cap B \supseteq B$.
True or False. For every sets A, B, C we have $A \cap(B \cap C)^{c}=(A \cup B) \cap(A \cup C)$.
True or False. The statement $p \leftrightarrow q$ is false if p and q are both false.

